This volume contains the abstracts of the papers presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications held in the Faculty of Mathematics of the University of Santiago de Compostela, Spain, from 4th to 8th July 2011. The conference was organized to honour Professor Toro in the month of his 65th birthday. We think that all contributions are a valuable state of the art of the most recent research in the topic of numerical methods for hyperbolic equations providing the reader with the latest developments concerning the mathematical aspects and the applications of this active field of mathematics.
Numerical Methods
for Hyperbolic Equations
Numerical Methods for Hyperbolic Equations
Theory and Applications
An International Conference to Honour Professor E. F. Toro
Santiago de Compostela, July, 4th-8th 2011
BOOK OF ABSTRACTS

Edited by
A. Bermúdez
L. Cea
E. Vázquez-Cendón

2011
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

1 Análise numérica. 2 Ecuaciones hiperbólicas. I. Bermúdez de Castro, A., ed. II. Cea, L. ed. III. Vázquez-Cendón, E., ed. IV. Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V. Serie 519.6
519.6
517.956.3

© Universidade de Santiago de Compostela, 2011

Edita
Servizo de Publicacións e Intercambio Científico
Campus Vida
15782 Santiago de Compostela
www.usc.es/publicacions

ISBN 978-84-9887-713-7 (edición digital .pdf)
Contents

Foreword ... 9

Invited Speakers ... 12

On the design of conservative, accurate and symmetrical cell-centered Lagrangian schemes in 2D cylindrical coordinates for compressible fluid flows ... 13

New Trends in Hyperbolic Problems in the Industry .. 14

Mathematical Theories of existence for 3D conservation laws and the nature of convergence in the large eddy simulation regime ... 16

Numerical Relativistic Magnetohydrodynamics in Dynamical Spacetimes .. 17

Undercompressible shocks and moving phase boundaries .. 18

The initiation of detonations in reactive gases .. 19

Mathematical models for the cardiovascular system: analysis, numerical simulation, applications 21

Shock-capturing, past and future ... 22

The Riemann problem in computational science .. 23

Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin and finite volume schemes for conservation laws ... 24

Minisymposia ... 26

Finite volume and discontinous Galerkin schemes for stiff source term problems .. 27

Path-Conservative Schemes for Hyperbolic Source Term Problems ... 28

Entropy conservative and entropy stable schemes for nonconservative systems ... 30

A Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping 31

An efficient ADER scheme ... 33

A Unified Approach for High Order Finite–Volume and Discontinuous Galerkin Schemes for PDE with Stiff Source Terms .. 35

Accuracy enhancement of discontinuous Galerkin methods for stiff source terms .. 37

Novel shock-capturing schemes for Discontinuous Galerkin methods ... 39

Numerical Solution of Viscous and Thermally Conductive Gaseous Flows Via Hyperbolic Maximum Entropy Moment Closures ... 41

Methods and models for biomedical problems .. 43

A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion ... 44

Modeling and simulation of the hydrodynamics-biology coupling in a raceway ... 45
A simple model of filtration and macromolecule transport through microvascular walls ..47
Assessment of numerical methods for blood flow in veins ..49
Reduced models for the Fluid-Structure Interaction problem ..52

Multiphase flow and porous media ..53
Dynamics of submerged gravitational granular flows ...54
Finite Volume Method for Three-Dimensional Particle-Laden Free-Surface Flow ..56
Numerical simulation of a bubble rising in still liquids: determination of the instability transition modes58
Numerical simulation of three-dimensional transient variably saturated flow ...60
An all-speed asymptotic preserving scheme for the low Mach number limit of the Euler equations ..62
A New Scheme for Non-Classical Waves with TVB Proof for Scalar 1D-Case ..64
Modelling Microbial Chemotactic Waves in Saturated Porous Media using Adaptive Mesh Refinement.66
Numerical simulation of transport equations in Liquid Composite Molding Processes ..68
Mathematical modeling of heat transfer during quenching process ...70
Conservative formulation for compressible fluid flow through elastic porous media ...72
On the coupling of compressible and incompressible fluids ..74

Numerical methods in astrophysics ..76
Numerical methods for the hyperbolic evolution equations in the Fully Constrained Formalism of Einstein equations ..77
SPH versus AMR ..79
An Approximate Harten-Lax-van Leer Riemann Solver for Relativistic Magnetohydrodynamics ..80
MUSTA schemes in magnetohydrodynamics and neutrino transfer: application to core-collapse supernovae and gamma-ray bursts ..82
MHD-kinetic Modeling of Partially Ionized Plasma Flows: Solar Wind Interaction with the Interstellar Medium ..84
ON THE RIEMANN PROBLEM IN RELATIVISTIC HD AND MHD ..86

Recent advances in the numerical computation of environmental conservation laws with source terms ..87
Asymptotic behaviour of godunov-type numerical models with mobile bed with adaptation term.88
Finite volume discretisation of depth averaged scalar transport equations coupled to shallow water models ..90
A finite volume/duality method for Bingham viscoplastic flow ..92
A numerical model for global climate: effect of the latent heat of fusion ..94
Residual Distribution for Shallow Water Flows ..96
Modelling of Flood Problems based on a Two-Dimensional Well-Balanced Wave Propagation Algorithm with Bed Efflux /Influx Source Terms Including a Coupled Pipe Network Solver........... 98
A Large Time Step Upwind Scheme for the Shallow Water Equations with source terms 100
Augmented Roe’s approaches for Riemann problems including source terms: definition of stability region with application to the shallow water equations with rigid and deformable bed. 102
Balancing source terms revisited in depth-averaged Smoothed Particle Hydrodynamics (SPH) 104
Flooding simulations with subgrids .. 106

Seismology and geophysics modelling .. 107
Dynamics of gravitational instabilities on Earth and on Mars .. 108
Two-phase models for debris flows ... 109
Meshless methods for lava flow modeling and simulation ... 111
Finite volume schemes for balance laws on time-dependent surfaces ... 113
Finite volume schemes for nonlinear dispersive wave equations ... 115
Tsunami modelling using high order finite volume schemes on GPUs ... 116
On multilayer shallow water systems .. 118

Parallel Sessions .. 120

High Order Methods for Hyperbolic Conservation Laws ... 121
Comparison among different high order time integration methods useful for explicit schemes 122
High resolution schemes: TVD region its dependence on smoothness parameter 124
A numerical treatment of wet/dry zones in Well-Balanced Hybrid Schemes for Shallow Water Flow. 126
On the Analysis of a Solver for Generalized Riemann Problems by Asymptotic Expansion 128
CFL-Number-dependent TVD-Limiters ... 130
Arbitrary High Order Schemes for Transport Problems ... 132
An Five-Equation Model Based ALE Method for Compressible Multifluid Fluids 134
Efficient deterministic modelling of three-dimensional rarefied gas flows .. 136
High order stochastic finite volume methods for the numerical solution of hyperbolic equations with random initial data .. 138
Discontinuous-in-space explicit Runge-Kutta residual distribution schemes for time-dependent problems .. 140

Numerical Methods for Reactive Flows ... 142
Numerical simulation of a pulverized coal jet ... 143
Chapman-Jouguet conditions with temperature and velocity disequilibrium 145
Multi-phase simulation of Ammonium Nitrate Emulsion Detonations .. 147
A Flux Vector Splitting Scheme for the Euler Equations ... 149
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the use of Moving Least Squares for pressure discretization in low Mach number flows</td>
<td>151</td>
</tr>
<tr>
<td>Shallow Water Flows ..</td>
<td>153</td>
</tr>
<tr>
<td>Approximation of the Navier-Stokes system by multilayer models</td>
<td>154</td>
</tr>
<tr>
<td>Modeling of 3D phenomena in curved channels. Suitability of a 3D shallow waters approximation</td>
<td>156</td>
</tr>
<tr>
<td>Porosity versus resolved approach in 2D shallow water models. Experimental validation</td>
<td>158</td>
</tr>
<tr>
<td>A WENO scheme for the integral form of contravariant shallow water equations</td>
<td>160</td>
</tr>
<tr>
<td>A two-layer tidal-exchange flow</td>
<td>162</td>
</tr>
<tr>
<td>Numerical modelling of two-dimensional morphodynamics in gravel bed rivers</td>
<td>164</td>
</tr>
<tr>
<td>Poster Sessions ..</td>
<td>166</td>
</tr>
<tr>
<td>Noninvasive Monitoring of Hepatic Damage from Hepatitis C Virus Infection</td>
<td>167</td>
</tr>
<tr>
<td>Extension of fourthorder nonoscillatory central schemes to sediment transport equations</td>
<td>169</td>
</tr>
<tr>
<td>First approach to the application of operational 4DVAR Data Assimilation to the Regional Ocean Model System</td>
<td>171</td>
</tr>
<tr>
<td>Vascular network hemodynamics: Application to the study of Arteriovenous Malformations</td>
<td>173</td>
</tr>
<tr>
<td>Changes in buoyancy-driven instabilities by using a reaction-diffusion system</td>
<td>175</td>
</tr>
<tr>
<td>A Mean Gradient Method to Solve Shallow Flows.</td>
<td>177</td>
</tr>
<tr>
<td>Upwind and central schemes for nonhomogeneous hyperbolic conservation laws recognizing stationary solutions</td>
<td>179</td>
</tr>
<tr>
<td>Miscible Viscous Fingering on Reactive Interface</td>
<td>181</td>
</tr>
<tr>
<td>Discontinuous Galerkin Methods for Vlasov-Poisson system</td>
<td>182</td>
</tr>
</tbody>
</table>
This volume contains the abstracts of the papers presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications held in the Faculty of Mathematics of the University of Santiago de Compostela, Spain, from 4th to 8th July 2011. The conference was organized to honour Professor Toro in the month of his 65th birthday.

We would like to address our warmest thanks to the invited speakers: Juan Cheng (Institute of Applied Physics and Computational Mathematics, China), Frédéric Coquel (UPMC Paris 06, CNRS, France), James Glimm (University of Stony Brook, USA), José María Ibañez (Department of Astronomy and Astrophysics University of Valencia, Spain), Philippe LeFloch (University of Paris 6, France), Amable Liñan (Polytechnical University of Madrid, Spain), Alfio Quarteroni (Swiss Federal Institute of Technology, Lausanne, Switzerland), Philip L. Roe (University of Michigan, USA), Eleuterio Francisco Toro (University of Trento, Italy) and Chi-Wang Shu (Brown University, USA).

More than 70 abstracts were accepted for presentation at the following minisymposia:

- Recent advances in the numerical computation of environmental conservation laws with source terms.
- Multiphase flow and porous media.
- Numerical methods in astrophysics.
- Seismology and geophysics modelling.
- Finite volume and discontinuous Galerkin schemes for stiff source term problems.
- Methods and models for biomedical problems.

and parallel sessions:

- High order methods for hyperbolic conservation laws.
- Numerical methods for reactive flows and acoustics.
- Shallow water flows.

We think that all contributions are a valuable state of the art of the most recent research in the topic of numerical methods for hyperbolic equations providing the reader with the latest developments concerning the mathematical aspects and the applications of this active field of mathematics.

We would like to thank all the participants for the attendance and for their valuable contributions. Special thanks to the minisymposium organizers who made a large contribution to the conference.
Finite Volume Method for Three-Dimensional Particle-Laden Free-Surface Flow†

Patricio Bohorquez†

Keywords: Polyhedral mesh, Volume of Fluid, Finite Volume Method, Thin Film Flow, Equilibrium Theory of Dense Suspension.

Minisymposia: Multiphase flow and porous media

Parallel Session: Shallow water flows

Abstract We present a Finite Volume Method (FVM) for three-dimensional, incompressible, free-surface flow in the presence of non-cohesive, uni-modal, sediment particles near equilibrium. The physical model is based on the mixture (or drift-flux) theory [1]. The continuity equations of the water, sediment and air phases are reformulated in terms of the mixture volumetric velocity \vec{u},

$$\nabla \cdot \vec{u} = 0, \quad (1)$$

resulting in two scalar transport equations as

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \vec{u}) + \nabla \cdot [\phi(1-\phi)\vec{u}_\delta] = 0, \quad \phi = \beta, \gamma \quad (2)$$

where t is time, \vec{u}_δ denotes the slip velocity, β is the sediment-volumetric concentration and γ is the phase indicator function employed to capture the free surface. Equation (3) is solved by means of an explicit numerical scheme designed for the multi-dimensional advection equation [2]. The bulk momentum equation is formulated under the assumption of near equilibrium between water and sediment, i.e. $|\vec{u}_\beta| \ll |\vec{u}|$. Under this assumption, the mixture momentum equation reads [3]

$$\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \vec{F} - \vec{g} \cdot \vec{x} \nabla \rho, \quad (3)$$

where ρ is the mixture density, $\vec{v} := \vec{v}(\vec{u}, \vec{u}_\phi)$ is the mixture mass velocity, \vec{g} is the acceleration due to gravity, and \vec{F} is the generalised stress tensor that accounts for the viscous stress tensor, the diffusion stresses due to the relative motion between phases and the non-isotropic part of the sediment stress tensor. The model reveals that the isotropic part of the bulk stress tensor, i.e. the mixture pressure p, plays the same role as for a single incompressible flow. Consequently, (1)–(3) are discretised and assembled into a block system using a Schur complement formulation [4].

†This work has been supported by the Spanish MCyT, Junta de Andalucía and European funds under Projects# DPI2008-06624-C02 and P07-TEP02693
We compare numerical results obtained both in structure and polyhedral meshes for two physical problems: vertical settlers in the presence of free surface [5] and particle-laden flows down a steep inclined plane [6]. With these examples, we show the capability of the numerical scheme to capture discontinuities in ϕ, see figure 1, and to obtain the pressure distribution and the three-dimensional velocity profile. Finally, we also assess the mesh topology influence on the numerical results.

![Figure 1: Numerical solution (left) for the volumetric concentration of sediment $\beta(z,t)$ in the experiments (right) by Snabre et al. [5].](image)

References

Numerical Methods for Hyperbolic Equations: Theory and Applications. An international conference to honour Professor E.F. Toro
University of Santiago de Compostela, 4-8 july 2011, Spain

Numerical simulation of a bubble rising in still liquids: determination of the instability transition modes†

J. C. Cano-Lozano, P. Bohorquez, C. Martínez-Bazán

Keywords: Bubble, Hydrodynamic Stability, Volume of Fluid, Finite Volume Method.

Minisymposia: Multiphase flow and porous media

Abstract: In this work, we have investigated numerically the transition from straight to zigzag motion during the rise of a single gas bubble of diameter D in a pure-clear stagnant liquid [1], for the limiting case $\rho_g/\rho_l \ll 1$ and $\mu_g/\mu_l \ll 1$, where ρ is density, μ is dynamic viscosity, and subindices g and l denote gas and liquid phases, respectively. The transition is determined in terms of the Reynolds, $Re = \rho_l g^{1/2} D^{3/2}/\mu_l$, and Bond, $Bo = \rho_l g D^2/\sigma$, numbers as set of nondimensional, independent parameters governing the flow dynamics [2], in which g is the acceleration due to gravity and σ is the surface tension. Subsequently, the neutral curve for the onset of zigzag motion is characterized in the (Re, Bo)-plane.

This type of flow has been previously studied numerically and experimentally [1, 2, 3]. From the numerical point of view, the terminal velocity and bubble shape are usually computed under the axisymmetric hypothesis, e.g. [2], though the real flow is both three-dimensional and unsteady. On the experimental side, e.g. [1], available data for the neutral curve cover a limited part of the (Re, Bo) diagram because of the intrinsic difficulties to the current problem, see dashed line in figure 1(a). Although the neutral curve has been already determined considering a spheroidal shape for the bubble [3], its precise description is still an unresolved problem. Thus, in this work we characterise accurately the above mentioned transition combining several second-order finite volume methods, which have been implemented in open source software, discussing the advantages of each one. We show that the combination of Godunov momentum advection scheme and adaptive quadtree mesh refinement, available in Gerris flow solver [4], performs better than schemes implemented in the interFoam multiphase solver in OpenFOAM. Consequently, the axisymmetric basic flow is characterised by means of Gerris flow solver, see figure 1(b), and the evolution of the bubble shape, terminal velocity, pressure and velocity fields described as functions of Re and Bo in the vicinity of the neutral curve. The stability property of the background flow is subsequently determined by means of three-dimensional numerical simulations [5], showing the loss of the flow axisymmetry and the developing of two counter-rotating vortices, as illustrated in figure 1(c).

†This work has been supported by the Spanish MCyT, Junta de Andalucía and European funds under Projects# DPI2008-06624-C02 and P07-TEP02693
Figure 1: (a) Stability diagram showing the experimental neutral curve [1], dashed line, and our preliminary result, blue circle. Thin solid lines depict the Morton number, $Mo = g
u_f^2 / \rho_L \sigma^3$, from 10^{-12} to 10^4. (b) Axisymmetric bubble at $Re = 113.1$ and $Bo = 3.925$ simulated with Gerris flow solver. (c) Streamwise vorticity contours observed in the three-dimensional perturbed flow with axisymmetric bubble shape, corresponding with the circle depicted in (a).

References

Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
jccano@ujaen.es http://www.fluidsujaen.es
This is to certify that

Patricio Bohórquez

has delivered The Talk entitled

Finite Volume Method for Three-Dimensional Particle-Laden Free-Surface Flow

at the International Conference "*Numerical Methods for Hyperbolic Equations: Theory and Applications*", to honour Professor E.F. Toro in the month of his 65th birthday. The conference was held on 4-8 July 2011 at the Faculty of Mathematics, University of Santiago de Compostela, Spain.

Santiago de Compostela, July 8, 2011

M-Elena Vázquez-Cendon
Coordinator of the Organizing Committee
International Conference to honour Professor E.F. Toro
Department of Applied Mathematics
Universidade de Santiago de Compostela
Attendance Certificate

This is to certify that

Patricio Bohórquez

has attended at the International Conference "Numerical Methods for Hyperbolic Equations: Theory and Applications", to honour Professor E.F. Toro in the month of his 65th birthday. The conference was held on 4-8 July 2011 at the Faculty of Mathematics, University of Santiago de Compostela, Spain.

Santiago de Compostela, July 8, 2011

M Elena Vázquez-Cendon
Coordinator of the Organizing Committee
International Conference to honour Professor E.F. Toro
Department of Applied Mathematics
Universidade de Santiago de Compostela