Trabajo Fin de Grado

SIMULACIÓN NUMÉRICA NO HIDROSTÁTICA DE PROCESOS DE SEDIMENTACIÓN

Alumno: Jesús Castillo González

Tutor: Prof. D. Patricio Bohórquez Rodríguez de Medina

Dpto: Ingeniería Mecánica y Minera

Junio, 2015
ÍNDICE

Capítulo 1. Introducción y motivación...5

1.1. Motivación ...6

1.1.1. Medidas preventivas ..7

1.1.1.1. Rasgos generales ..7

1.1.1.2. Producción, tipo y movimiento de los sedimentos7

1.1.1.3. Prevención usada para el diseño de presas8

1.1.2. Medidas correctoras ...8

1.1.2.1. Rasgos generales ..8

1.1.2.2. Administración a largo plazo de la colmatación en grandes y medianos embalses ...9

1.1.2.3. Administración de la colmatación en azudes y pequeñas presas10

1.1.3. Seguimiento y control en el problema de la colmatación de embalses11

1.2. Introducción ..11

1.2.1. Estructura del proyecto..12

Capítulo 2. Aplicación del modelo de mezcla disponible en Fluent para el problema de sedimentación..13

2.1. Modelo de mezcla en Fluent...14

2.1.1. Introducción ..14

2.1.2. Ecuación de continuidad ..14

2.1.3. Ecuación de cantidad de movimiento ...15

2.1.4. Velocidad relativa (slip) y velocidad de arrastre (drift)15

2.1.5. Ecuación para la fracción volumétrica (volume fraction) de la segunda fase ..17

2.2. Experimentos relacionados con nuestro problema válidos para testear el modelo de mezcla de Fluent ...17

2.3. Simulación numérica del experimento de Snabre et al. (2009)..................21

2.3.1. Definición del problema...21

2.3.2. Modelos disponibles en Fluent seleccionados para simular el problema21

2.3.3. Resultados obtenidos ..22

2.3.3.1. Comparación con los resultados del experimento de Snabre et al. (2009) ...22

2.3.3.2. Concentración y velocidad a lo largo de la malla..............................23

2.3.4. Simulación con métodos más difusivos ...26

2.4. Simulación en condiciones hidráulicas reales (río Guadalquivir)27

2.4.1. Definición de la simulación ..27
2.4.2. Resultados obtenidos .. 30
2.4.3. Soluciones adoptadas ante el problema presentado 31

Capítulo 3. Aplicación del modelo Euleriano disponible en Fluent para el problema de sedimentación .. 35

3.1. Modelo Euleriano en Fluent ... 36
3.1.1. Introducción .. 36
3.1.2. Ecuaciones de conservación ... 36
3.1.2.1. Continuidad ... 36
3.1.2.2. Conservación de cantidad de movimiento ... 36
3.1.3. Concentración de área interfacial ... 37
3.1.4. Coeficiente de intercambio en la interfase ... 38
3.1.4.1. Coeficiente de intercambio en fluido-fluido (drag) 38
3.1.5. Fuerza de sustentación (Lift force). ... 38
3.1.6. Fuerzas de lubricación en la pared (wall lubrication force) 39
3.1.7. Fuerza de dispersión turbulenta (turbulent dispersion force) 39
3.1.8. Masa virtual (virtual mass) .. 39
3.2. Simulación numérica del experimento de Snabre et al. (2009) 40
3.2.1. Definición del problema ... 40
3.2.2. Resultados obtenidos .. 40
3.3. Simulación en condiciones hidráulicas reales (río Guadalquivir) 42
3.3.1. Definición del problema ... 42
3.3.2. Resultados obtenidos .. 43

Capítulo 4. Análisis de la componente hidráulica en la presa de Marmolejo........... 46
4.1. Definición de la simulación .. 47
4.2. Resultados obtenidos .. 48
4.3. Zona de sedimentación .. 56
4.4. Influencia de la altura de la compuerta (salida) en la componente hidráulica... 65

Capítulo 5. Sumario y conclusiones .. 76
5.1. Sumario .. 77
5.2. Conclusiones ... 79

Capítulo 6. Anexos ... 80
6.1. Código para crear las figuras 2.6, 3.1 ... 81
6.2. Código para crear las figuras 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 3.4, 3.5, 3.6,
3.7, 3.8 .. 81
6.3. Código para crear las figuras 4.6, 4.7 ... 82
6.4. Código para obtener los datos de las figuras 4.20, 4.26 .. 84

Capítulo 7. Bibliografía .. 85
<table>
<thead>
<tr>
<th>1.1.</th>
<th>Motivación</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.</td>
<td>Medidas preventivas</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1.1.</td>
<td>Rasgos generales</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1.2.</td>
<td>Producción, tipo y movimiento de los sedimentos</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1.3.</td>
<td>Prevención usada para el diseño de presas</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Medidas correctoras</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2.1.</td>
<td>Rasgos generales</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2.2.</td>
<td>Administración a largo plazo de la colmatación en grandes y medianos embalses</td>
<td>9</td>
</tr>
<tr>
<td>1.1.2.3.</td>
<td>Administración de la colmatación en azudes y pequeñas presas</td>
<td>10</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Seguimiento y control en el problema de la colmatación de embalses</td>
<td>11</td>
</tr>
</tbody>
</table>
1.1. Motivación

Los embalses son estancamientos de agua producidos por una obstaculización en un río, que cierra total o parcialmente su cauce. Estos pueden controlar la cantidad de sólidos transportada en los ríos, produciendo la colmatación de los embalses como se puede ver en la figura 1.1. Hoy en día la colmatación de embalses es un problema ambiental muy grave, y más aún en España donde la erosión afecta a una gran cantidad de ríos. La consecuencia de la colmatación de embalses no es solamente la pérdida de volumen del embalse, también disminuye la calidad del agua para consumo humano y se incrementa la probabilidad de inundaciones, por la pérdida de volumen.

Fig 1.1. Embalse de Cordobilla, en el río Genil, lleno de lodos.

La erosión y con ello la producción de sedimentos es un problema muy importante en toda la vertiente mediterránea y principalmente en la isla Canarias, con valores medios de sedimentos en el conjunto del Estado Español de 2.500 Tn/km²·año, lo cual equivale a 0,8 km³/año. Aunque también hay que destacar que no todos los sedimentos son almacenados en los embalses, una gran cantidad serán arrastrados por la corriente y saldrán de ellos. Una pérdida realista de volumen en los embalses de España ronda un 0.5% al año, teniendo en cuenta que el volumen de agua embalsable es de unos 56 km³ y que la construcción de embalses se ha visto reducida últimamente por diversas razones (crisis económica, oposición social, rentabilidad....), se concluye que si la tendencia no cambia en unos 50 años las reservas de agua en los embalses se verán reducidas en un 25%, pasando el volumen de agua embalsable en España a 44 km³. En la siguiente tabla se puede ver los estados de colmatación en diversos embalses Españoles, obtenido de Cobo (2008).

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Capacidad inicial (Hm³)</th>
<th>Volumen sedimento (Hm³)</th>
<th>Colmatación (%)</th>
<th>Tasa colmatación (%/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepeñas</td>
<td>890</td>
<td>50</td>
<td>6</td>
<td>0,5</td>
</tr>
<tr>
<td>Mequinenza</td>
<td>1,500</td>
<td>200</td>
<td>13</td>
<td>0,4</td>
</tr>
<tr>
<td>Barasona</td>
<td>90</td>
<td>18</td>
<td>20</td>
<td>0,4</td>
</tr>
<tr>
<td>Guadalmellato</td>
<td>162</td>
<td>44</td>
<td>27</td>
<td>0,7</td>
</tr>
<tr>
<td>Pedro Marín</td>
<td>19</td>
<td>18</td>
<td>95</td>
<td>5,9</td>
</tr>
<tr>
<td>Dona Aldonza</td>
<td>23</td>
<td>22</td>
<td>96</td>
<td>6,4</td>
</tr>
</tbody>
</table>

Otro problema menos conocido de la colmatación de embalses es la erosión que producen las aguas salientes, mayor cuanto mayores sean las partículas de sedimentos, produciendo la erosión del cauce y de las orillas aguas abajo. Actualmente no hay soluciones definitivas para embalses en funcionamiento ni para nuevos embalses, por tanto resulta interesante realizar estudios relacionados con esta temática.

1.1.1. Medidas preventivas
1.1.1.1. Rasgos generales

Las medidas aplicables en el problema de colmatación de embalses pueden ser sobre la zona productora de sedimentos (cuenca), reduciendo la producción y movimiento de sedimentos, o sobre el embalse, aumentando el control del paso de sedimentos por la salida de la presa.

También hay que decir que la prevención sobre la colmatación de embalses no es una ciencia exacta con efectos a largo plazo, por lo que se debe tener gran cuidado con estos factores, ya que existe el riesgo de que la obra sea construida con una vida útil muy inferior a la estimada.

1.1.1.2. Producción, tipo y movimiento de los sedimentos

Para cualquier medida preventiva, previamente es necesario conocer suficiente información sobre el problema. En nuestro caso, lo primero que tendremos que estudiar es la tasa de erosión real, en las zonas donde se sitúa nuestro embalse. Para reducir la producción de sedimentos y aumentar la vida útil de los embalses, será necesario localizar las zonas productoras de sedimento y adecuarlas mediante un mantenimiento del suelo o con obras de contención que eviten el paso del sedimento al embalse.

Las medidas que se usan para conocer la información necesaria no son muy precisas debido al gran número de formas de transporte que existen (suspensión, fondo, saltos......), además de la dependencia con el tiempo y el lugar en el que nos encontremos. Por esta razón, muchas veces la cantidad de sedimento en los embalses es mucho mayor a la estimada, ya que se calcula a la baja la cantidad de sedimento que puede entrar en un embalse. A pesar de esto, siempre es necesario conocer estos datos con la máxima precisión posible, para tener una idea del problema y adoptar las medidas preventivas más útiles.
1.1.3. Prevención usada para el diseño de presas

Aunque existen medios para saber de antemano la producción y movilización de sedimentos, como se ha dicho anteriormente, a muchos embalses no se les ha hecho un estudio de este tipo y lo que es peor aún, actualmente se hacen proyectos sin tener en cuenta este problema en zonas con una alta tasa de erosión. También debería tenerse en cuenta la posibilidad de realizar simulaciones para conocer la dinámica de los sedimentos en el embalse y las previsiones de colmatación a largo y corto plazo, pudiendo modificar la altura de la presa y sobre todo las cotas de las salidas en la presa, para optimizar la salida del sedimento. Un aumento de la altura de la presa se trata de una solución temporal ya que a largo plazo se colmatará igualmente. En pequeñas y medianas presas se pueden modificar las dimensiones y posiciones de las salidas (compuertas o desagües de fondo), para que puedan absorber las máximas crecidas del río sin modificar el campo de velocidad y presiones aguas arriba de la presa, haciendo que se muevan los sedimentos y manteniendo limpio el cauce aguas arriba y abajo de la presa. Otra posibilidad es construir azudes de cola (ver figura 1.4) para concentrar los sedimentos en un punto determinado y facilitar su extracción. Estos sedimentos se podrían trasladar a un lugar aguas abajo de la presa, para ser transportados por crecidas controladas. Con respecto a la abrasión que pueden sufrir los elementos que componen la presa, también existen medidas preventivas como puede ser el diseño de compuertas sin guías, las cuales pueden sufrir abrasión. Por otro lado también se pueden construir decantadores en las tomas. Esta última medida se suele utilizar en sistemas de desviación de aguas desde pequeñas presas o azudes y su eficacia depende principalmente de un diseño óptimo.

Otras medidas alternativas a las que hemos mencionado pueden ser acoplar compuertas y aliviaderos adicionales o dejar útil los canales de desvío que se hicieron para la construcción de la presa, todo ello con la idea de usarlos para evacuar mejor los sedimentos.

1.1.2. Medidas correctoras

1.1.2.1. Rasgos generales

Las medidas correctoras que se suelen aplicar al problema de sedimentación en embalses no son de pequeña importancia como podría ser un mantenimiento constante. Se suelen aplicar medidas de gran importancia en un momento determinado. Estas medidas se clasifican en cuatro grupos principalmente:

- Eliminación parcial o total de presas y azudes. Se realiza cuando una presa que está totalmente colmatada no es útil y tampoco es rentable otro tipo de medida para reutilizarla.

- Vacíados de embalses. En España cada vez se recurre más a esta medida, ya que normalmente para reparaciones o supervisiones de algunas partes de la presa (compuertas, desagües de fondo...), es necesario realizar un vaciado. La retirada de sedimentos suele ser un valor añadido, aunque algunas veces se recurre a esta medida solo para retirar los sedimentos.

- Extracción de sedimento. Para realizar esta operación existen tres formas, sifonado o aspiración de sedimentos, excavación y dragado. El problema de la aspiración es que solo puede evacuar el 5/10% del total de los sedimentos en el embalse, además de que no puede extraer los sedimentos que están en suspensión. Con respecto al dragado ocurre lo mismo que antes, aunque en menor medida, estas dos medidas proceden de...
métodos usados en los puertos. Por último la excavación solo se puede realizar con niveles muy bajos de agua y se pueden retirar más cantidad de sedimentos que en los casos anteriores, además el material retirado se podría usar para otros fines, como puede ser el compostaje. Los problemas de este método es el coste y la escasez de casos donde se ha usado.

- Administración de las crecidas y del nivel del embalse. Desde el punto de vista ambiental es la mejor opción, aunque para ser útil debe aplicarse de forma constante y ponerla en marcha lo antes posibles tras la construcción del embalse. Las crecidas se pueden generar usando los desagües de fondo en combinación con otros métodos de evacuación. Para que la retirada de sedimento sea lo más efectiva posible se debe crear una crecida lo más grande posible con un nivel bajo del embalse, de esta forma conseguiremos que los sedimentos que están en la superficie del embalse sean arrastrados por la corriente. Por otro lado cuando necesitamos hacer vaciados controlados, la mejor opción para evacuar los sedimentos es mediante los desagües de fondo.

Para estas medidas y para las que se comentaran después, el tamaño del embalse es una variable muy importante, que nunca deberemos perder de vista.

1.1.2.2. Administración a largo plazo de la colmatación en grandes y medianos embalses

En estos embalses casi todo el sedimento producido es atrapado, solo las partes más pequeñas capaces de quedarse en suspensión pueden salir del embalse. A lo largo de un plano longitudinal de la presa se crea una capa de partículas con un gradiente del tamaño de partículas decreciente en la dirección de la presa, consecuencia del aumento de resistencia del agua y de la pérdida de velocidad horizontal en la presa. En la figura 1.3 se ve como es la colocación de partículas más probable en un plano longitudinal de la presa, en el caso de una mala gestión de desagües de fondo y unos reducidos cambios en el nivel del embalse. Como consecuencia tenemos una capa de sedimentos, con partículas más gruesas con forme nos acercamos a la cola del embalse.

Por otro lado, en presas que habitualmente se encuentran con un nivel bajo mientras se producen crecidas importantes y que además no se realizan de forma habitual desagües de fondo, el sedimento con un tamaño más fino (arcillas) se reduce. En las proximidades de la presa se acumulan mayores cantidades de partículas gruesas (arenas y limos), por un movimiento más rápido de los sedimentos desde la cola del embalse hacia la salida. La velocidad del sedimento será mayor cuanto menor sea el nivel del embalse en el momento de la crecida. Este perfil de sedimentos solo se suele dar en embalses usados para regadío, ya que suelen recibir las lluvias de otoño con muy poco volumen de agua embalsada.

La acumulación de sedimentos que se produce en la salida del embalse puede cortar el suministro de agua, impidiendo el abastecimiento de agua y disminuyendo la columna de agua que se usa para producir electricidad. Con un buen uso de los desagües de fondo y una importante variación en los niveles del embalse en los periodos de crecidas se puede obtener un perfil de sedimento como el que se muestra en la figura 1.4, el cual es aceptable. Otras medidas complementarias para favorecer la decantación puede ser construir más aliviaderos o desagües de fondo. En casos concretos se podría plantear instalar aliviaderos que evacuen el agua y sedimento hacia barrancos cercanos, aunque esta solución es más compleja que las demás y por ello no se suele usar.

1.1.2.3. Administración de la colmatación en azudes y pequeñas presas

Los azudes y pequeñas presas normalmente pueden tener una rápida colmatación si no se gestionan adecuadamente, ya que la capacidad de almacenamiento está muy limitada. Las pequeñas salidas de estos embalses junto al problema de que suelen estar siempre llenos para su explotación, provoca que se suelan colmatar fácilmente. Aquí suele ser útil realizar dragados periódicos como medida de mantenimiento. Por otro lado es habitual que se produzca abrasión en los equipos de la presa (turbinas, tuberías, desagües, compuertas...). Ante este problema la única solución es dejar de pasar el agua por las turbinas en las crecidas, para minimizar el desgaste de las piezas.

Otras opción disponible es construir diques en las colas de los embalses (ver figura 1.4), útil para evitar el paso de materiales gruesos y finos, aunque no evita el paso el de los materiales más...
finos (solo los reduce en un 3%), causantes de la abrasión. Por tanto será necesario realizar un estudio económico para comparar qué resulta más conveniente, construir diques o reparar las instalaciones de la presa. Para reducir el coste de la reparación de los componentes de la presa se pueden construir accesos rápidos a estas instalaciones y aplicar un plan de mantenimiento adecuado.

1.1.3. Seguimiento y control en el problema de la colmatación de embalses

A parte de las medidas correctoras y preventivas que puedan tomarse, es muy importante realizar un control y seguimiento constante de la evolución de los sedimentos en los embalses. Por ejemplo se podría realizar un control cada diez años y controles puntuales tras grandes crecidas. Estos controles serían útiles para comparar con las previsiones hechas en la fase de proyecto y poder crear modelos de previsión de sedimentación más precisos, además servirán para poder adoptar medidas al respecto.

En Estados Unidos usando criterios económicos se considera que es necesario adoptar medidas de control cuando la colmatación excede el 15% de lo estimado y medidas correctoras cuando excede el 40%. En la Unión Europea, países como Italia, con una gran problemática en cuanto a colmatación de embalses, poseen leyes recientes que obliga a las grandes presas a controlar y corregir la colmatación de embalses. En Francia la inspección de presas se tiene que hacer cada 10 años por ley, para asegurar su seguridad y el correcto funcionamiento. Con frecuencia se realiza el vaciado completo del embalse y con ello la extracción de grandes cantidades de sedimento río abajo. Esta práctica periódica en el Estado Español podría servir para reducir la tasa de colmatación de los embalses, además de reparar y poner en funcionamiento los desagües de fondo, que son imprescindibles para el control de la colmatación.

Hay que destacar que los efectos ambientales de un vaciado dependen de dos aspectos: la cantidad de sedimento movilizada y la carga de material orgánico. De todas formas las experiencias de vaciados de embalses que se han estudiado hasta ahora coinciden en que tienen efectos ambientales absolutamente reversibles.

1.2. Introducción

Una vez vista la problemática nos disponemos a buscar soluciones para el problema. Debido al auge que está teniendo actualmente el CFD, resulta interesante comprobar si algún software comercial es capaz de realizar simulaciones con mezclas multifásicas como las que tenemos en los embalses. Con la idea de entender como es el movimiento de las partículas de sedimento en el embalse y poder adoptar algún tipo de medida. El software comercial más destacado actualmente para simulación de fluidos es Ansys Fluent, por tanto vamos a realizar un estudio del comportamiento de este programa con su modelo multifásico.

El modelo multifásico es un modelo complejo, debido a la necesidad de acoplar las fórmulas de continuidad y cantidad de movimiento para todas las fases de la mezcla (liquida y sólida), esto se puede ver en los apartados 2.1 y 3.1. Para simplificar se considera la fase sólida como un fluido a partir de la hipótesis del medio continuo.

La hipótesis del medio continuo es la hipótesis fundamental de la mecánica de fluidos y en general de toda la mecánica de medios continuos, en ella se considera que el flujo es continuo en todo su volumen. Con esta hipótesis se puede considerar que las propiedades del fluido (densidad, temperatura, etc.) son funciones continuas.
La manera de determinar si esta hipótesis es válida consiste en comparar el camino libre medio de las moléculas con la longitud característica del sistema físico. Al cociente entre estas longitudes se le denomina número de Knudsen. Cuando este número adimensional es mucho menor a la unidad, el material puede considerarse un fluido (medio continuo). En caso contrario los efectos producidos por la naturaleza molecular de la materia deben tenerse en cuenta y hay que utilizar la mecánica estadística, ya que los fluidos en realidad son discretos por estar hechos de átomos, moléculas y espacios vacíos. El plasma es un ejemplo donde la hipótesis del medio continuo no es válida.

En la Hipótesis del Medio Continuo existen tres grandes grupos de medios continuos: Mecánica de sólidos deformables, Mecánica del sólido rígido, Mecánica de fluidos y (que se divide en: Fluidos incompresibles y Fluidos compresibles).

1.2.1. Estructura del proyecto

El modelo multifásico de Fluent dispone de tres submodelos, pero en nuestro caso solo son válidos los dos más complejos: el modelo de mezcla y el modelo Euleriano los cuales están descritos en sus respectivos apartados.

En el capítulo 2 presentaremos los resultados obtenidos usando el modelo de mezcla para el caso más sencillo, “sedimentación en un estanque unidimensional con una concentración de la fase secundaria elevada”. Tras obtener unos buenos resultados pasamos a realizar esta misma simulación con una concentración muy baja como la que poseen los ríos, en este momento nos dimos cuenta que el software no funcionaba correctamente, ya que no cumplía la ecuación de conservación de la masa. Una vez visto este modelo multifásico, pasamos a comprobar el modelo más potente que dispone Fluent, el modelo Euleriano.

En el capítulo 3 presentamos los resultados obtenidos usando el modelo Euleriano para el mismo caso del capítulo 2. En este caso los resultados obtenidos con una mezcla similar a las de los ríos, tampoco cumplieron la ecuación de conservación de la masa. Una vez comprobado que el modelo multifásico no funcionaba correctamente pasamos a realizar simulaciones con una única fase (agua), asumiendo que el campo fluido no va a ser modificado por la fase secundaria, debido a su baja concentración.

En el capítulo 4 nos centramos en simular el campo fluido en un plano longitudinal de la presa de marmolejo (la cual está actualmente colmatada). Una vez realizado esto y obtenido unos resultados satisfactorios nos propusimos estudiar como evolucionaría el campo fluido modificando la altura de la compuerta, para entender si puede ser un factor importante en la sedimentación.
Capítulo 2. Aplicación del modelo de mezcla disponible en Fluent para el problema de sedimentación

2.1. Modelo de mezcla en Fluent

2.1.1. Introducción
2.1.2. Ecuación de continuidad
2.1.3. Ecuación de cantidad de movimiento
2.1.4. Velocidad relativa (slip) y velocidad de arrastre (drift)
2.1.5. Ecuación para la fracción volumétrica (volume fraction) de la segunda fase

2.2. Experimentos relacionados con nuestro problema válidos para testear el modelo de mezcla de Fluent

2.3. Simulación numérica del experimento de Snabre et al. (2009)

2.3.1. Definición del problema
2.3.2. Modelos disponibles en Fluent seleccionados para simular el problema
2.3.3. Resultados obtenidos

2.3.3.1. Comparación con los resultados del experimento de Snabre et al. (2009)
2.3.3.2. Concentración y velocidad a lo largo de la malla

2.3.4. Simulación con métodos más difusivos

2.4. Simulación en condiciones hidráulicas reales (río Guadalquivir)

2.4.1. Definición de la simulación
2.4.2. Resultados obtenidos
2.4.3. Soluciones adoptadas ante el problema presentado
2.1. Modelo de mezcla en Fluent

2.1.1. Introducción

El modelo de mezcla es un modelo simplificado de las ecuaciones de flujo multifásico, ya que se compone de las ecuaciones de continuidad y cantidad de movimiento para la mezcla (una sola ecuación para todas las fases), esto reduce considerablemente el esfuerzo computacional, especialmente cuando existen varias fases dispersas.

Se considera una suspensión de una fase dispersa de partículas (gotas o burbujas) en un flujo continuo (líquido o gas). La velocidad de deslizamiento entre las fases dispersa y continua se tiene en cuenta al introducir términos de convección en la ecuación de continuidad de la fase dispersa. Esta velocidad de deslizamiento se calcula a partir de aproximaciones algebraicas como veremos en el apartado 2.1.4.

En el modelo de mezcla, al no considerar la ecuación de cantidad de movimiento para la fase dispersa, no se tiene en cuenta la inercia del sistema. Sin embargo el modelo euleriano realiza una corrección para tener en cuenta esta inercia, la cual consiste en introducir un término adicional en la ecuación de la velocidad relativa de las fases, esto se puede ver en el apartado 2.1.4. y en Manninen et al. (1996).

2.1.2. Ecuación de continuidad

La ecuación de continuidad para el modelo de mezcla es:

\[\frac{\partial}{\partial t}(\rho m) + \nabla \cdot (\rho m \vec{v}_m) = 0 \]

Donde \(\vec{v}_m \) es la velocidad media de flujo másico.

\[\vec{v}_m = \frac{\sum_{k=1}^{n} \alpha_k \rho_k \vec{v}_k}{\rho m} \]

Nótese que la velocidad media de flujo másico tiene en cuenta la densidad de las fases. Mientras que la velocidad media volumétrica no las tiene en cuenta, ya que esta se calcula solo a partir de la fracción volumétrica \(\vec{v}_v = \sum_{k=1}^{n} \alpha_k \vec{v}_k \). Un concepto que está muy relacionado con estas dos velocidades es la fracción másica, que para una fase \(k \) se define como el cociente de la masa de la fase \(k \) frente a la densidad de la mezcla:

\[c_k = \frac{\alpha_k \rho_k}{\rho m} \]

\(\alpha_k \) es la fracción volumétrica de la fase \(K \) y \(\rho m \) es la densidad de la mezcla:

\[\rho m = \sum_{k=1}^{n} \alpha_k \rho_k \]

En Bohórquez (2012) se propone un método de volumenes finitos, para simular la sedimentación de esferas monodispersas en un fluido Newtoniano. En este método se usa un modelo numérico basado en \(\vec{v}_v \) para la ecuación de conservacion de la masa:

\[\nabla \cdot \vec{v}_v = 0 \]

La formulación que ofrece Fluent para esta ecuación puede presentar problemas de conservación de la masa, por esta razón en Bohórquez (2012) se presenta este modelo, el cual
impone más estrictamente la conservación de la masa y puede evitar posibles errores de la simulación. Además es incongruente que Fluent use esta ecuación de conservación de la masa, la cual es desarrollada para flujo compresible y que por otra parte no nos permita usar modelo basado en densidad (modelo para flujo compresible).

2.1.3. Ecuación de cantidad de movimiento

La ecuación de cantidad de movimiento para la mezcla puede ser obtenida sumando las ecuaciones individuales del momento para todas las fases, según se muestra en la guía teórica de Fluent:

\[
\frac{\partial}{\partial t}(\rho_m \mathbf{v}_m) + \nabla \cdot (\rho_m \mathbf{v}_m \mathbf{v}_m) = -\nabla p + \nabla \cdot [\mu_m (\nabla \mathbf{v}_m + \nabla \mathbf{v}_m^T)] + \rho_m \mathbf{g} + \mathbf{F} + \nabla \cdot \left(\sum_{k=1}^{n} \alpha_k \rho_k \mathbf{v}_{dr,k} \right)
\]

Donde n es el número de fases, \(\mathbf{F} \) las fuerzas de cuerpo (body force) y \(\mathbf{v}_{dr,k} \) es la velocidad de arrastre de la segunda fase k.

De acuerdo a la guía teórica de Fluent, la viscosidad de la mezcla \(\mu_m \) se calcula en principio mediante la media aritmética de cada fase.

\[
\mu_m = \sum_{k=1}^{n} \alpha_k \mu_k
\]

Pero esto no siempre es de esta forma, ya que dependiendo de los modelos que usemos, Fluent calcula la viscosidad de la mezcla de una forma u otra.

2.1.4. Velocidad relativa (slip) y velocidad de arrastre (drift)

La velocidad de arrastre de la fase k se define de la siguiente forma:

\[
\mathbf{v}_{dr,k} = \mathbf{v}_k - \mathbf{v}_m
\]

Por otro lado, la velocidad relativa se define como la diferencia entre la velocidad de la fase p y q

\[
\mathbf{v}_{pq} = \mathbf{v}_p - \mathbf{v}_q
\]

El modelo de mezcla de Fluent, hace uso de una formulación de deslizamiento algebraica, que es válida cuando existe un equilibrio local entre las fases. Este equilibrio debe ser alcanzado a través de una escala de longitud espacial corta, ya que se considera que ambas fases están fuertemente acopladas.

Usando Manninen et al. (1996), la velocidad relativa se calcula a partir de:

\[
\mathbf{v}_{pq} = \frac{\tau_p}{f_{drag}} \left(\frac{\rho_p - \rho_m}{\rho_p} \right) \mathbf{d}
\]

donde \(\tau_p \) es el tiempo de relajación de la partícula:
\[\tau_p = \frac{\rho_p d_p^2}{18 \mu_e} \]

Aquí \(d\) es el diámetro de las partículas y \(\ddot{a}\) es la aceleración de las partículas. Cómo podemos ver la aceleración a parte de la gravedad incluye otros términos, para tener en cuenta la inercia del sistema.

\[\ddot{a} = \ddot{g} - (\dot{\vec{v}}_m \cdot \nabla)\dot{\vec{v}}_m - \frac{\partial \ddot{\vec{v}}_m}{\partial t} \]

Existen distintas formas para calcular la función de arrastre \(f_{drag}\), que fueron propuestas por:

- L. Schiller and Z. Naumann. (1935)
- Grace et al. (1978)
- Tomiyama et al. (1999)
- constant
- user-defined

El modelo que nosotros hemos usado es el universal drag, el cual se define de la siguiente forma.

La función de arrastre se define según la guía teórica de Fluent como:

\[f = \frac{C_d Re}{24} \]

donde el número relativo de Reynolds de la fase \(p\) y \(q\) se obtiene a partir de la velocidad relativa entre ambas fases:

\[Re = \frac{\rho_p |\vec{v}_q - \vec{v}_p| d_p}{\mu_e} \]

El coeficiente de arrastre \(C_d\) es definido a partir del número de Reynolds:

- Cuando \(Re<1\) el coeficiente de arrastre para el régimen de Stoke es:
 \[C_D = \frac{24}{Re} \]
- Cuando \(1<Re<1000\) el coeficiente de arrastre para el régimen viscoso es:
 \[C_D = \frac{24}{Re} (1 + 0.1 Re^{0.75}) \]

Siendo la viscosidad efectiva de la mezcla:

\[\mu_e = \frac{\mu_q}{(1 - \alpha_p)^{2.5}} \]
De la figura 2.1 podemos ver que la viscosidad de la mezcla o viscosidad efectiva aumenta exponencialmente, tendiendo a infinito a medida que crece la concentración de partículas. Esto se traduce en un aumento de la resistencia que ofrece la fase continua al movimiento de la fase dispersa.

Debido a que nosotros vamos a trabajar con un número de Reynolds menor a la unidad, nos encontramos en un régimen de Stoke y nuestro coeficiente de arrastre se calcula como:

\[C_D = \frac{24}{Re} \]

Por tanto \(f=1 \), lo cual quiere decir que la función de arrastre en este caso no depende del nº de Reynolds y por tanto tampoco depende de la viscosidad efectiva de la mezcla.

2.1.5. Ecuación para la fracción volumétrica (volume fraction) de la segunda fase

Según la guía teórica de Fluent, a partir de la ecuación de continuidad de la segunda fase \(p \), la fracción volumétrica de esta fase puede ser obtenida mediante la siguiente expresión:

\[
\frac{\partial}{\partial t} (\rho_p \alpha_p) + \nabla \cdot (\rho_p \alpha_p \vec{v}_m) = - \nabla \cdot (\rho_p \alpha_p \vec{v}_{dr,p}) + \sum_{q=1}^{n} (\dot{m}_{qp} - \dot{m}_{pq})
\]

Aquí aparece la velocidad de arrastre que definimos en el apartado 2.1.4. Esta velocidad de arrastre puede expresarse en función de la velocidad de deslizamiento a partir de la siguiente expresión obtenida de Manninen et al. (1996).

\[
\vec{v}_{dr,k} = (1 - c_k) \vec{v}_{pq}
\]

Donde \(c_k \) es la fracción másica volumétrica definida en el apartado 2.1.2

2.2. Experimentos relacionados con nuestro problema válidos para testear el modelo de mezcla de Fluent

La sedimentación a bajas velocidades con partículas esféricas, en flujos Newtonianos ha sido ampliamente estudiada, experimental y numéricamente (Batchelor 1972; Davis 1985; Hinch...
A medida que va aumentando la concentración de partículas se va produciendo la obstaculización de la sedimentación, debido al reflujo que se produce en la parte superior de las partículas que están moviéndose hacia el fondo en cualquier proceso de sedimentación (Hinch 1977; Batchelor 1982). La ley empírica de Richardson and Zaki \(v = v_1 \phi (1 - \phi) \) que comentábamos en el apardo 2.1.4, aporta una predicción precisa de la velocidad de sedimentación, a partir de la velocidad de Stoke (Richardson and Zaki 1954; Mills and Snabre 1994). Para bajos números de Reynolds de las partículas y efectos térmicos despreciables, las iteraciones hidrodinámicas de largo alcance, conducen a un patrón complejo de remolinos, impulsados por los gradientes de densidad (Ham and Homsy 1988; Nicolai et al. 1995; Segré et al. 1997).

El experimento más destacado de los últimos años es el de Snabre et al (2009). En este experimento se estudian los efectos producidos por el conjunto de partículas en la velocidad de sedimentación a bajos números de Reynolds. Los experimentos han sido llevados a cabo con una suspensión granular, de esferas de polimetacrilato (PMMA) de un tamaño medio de 190 \(\mu \)m y una densidad de 1190 kg m\(^{-3}\). Inmersas en un fluido con una densidad de 890 kg m\(^{-3}\) y una viscosidad de 0.025 kg m\(^{-1}\) s\(^{-1}\).

El experimento se ha realizado en un depósito de PMMA, con una sección transversal \(W*D \) \((W = 4 \text{ cm}, D = 2 \text{ cm}; \text{Fig. 3})\) y una altura de \(H = 12 \text{ cm}\). En él se ha introducido una mezcla con una concentración del 40% para la fase dispersa. Ésta ha sido mezclada inicialmente moviendo arriba y abajo una malla metálica con unos orificios de 2mm de diámetro, quedando una mezcla totalmente homogénea como se muestra en la figura 2.4.a. Para poder observar el movimiento de las partículas se han impregnado éstas con un colorante orgánico que convierte las partículas en fluorescentes. Después, con un láser que ilumina un plano vertical del conteniner y métodos de velocimetría con imágenes de partículas, se puede obtener la concentración y velocidad de las partículas.

El concepto de velocidad de sedimentación de Stoke es fundamental en la descripción de los problemas de sedimentación, por ejemplo en la figura 2.4 se usa esta velocidad para calcular el...
tiempo adimensional. Por tanto, vamos a realizar una breve introducción del mismo, obtenida del libro Fernandez-Feria R. (2001).

La velocidad de Stoke o terminal se define como la velocidad que tendría una partícula aislada en una fase continua y se puede obtener a partir de la solución exacta del problema hidrodinámico.

\[v_t = \frac{2(\rho_p - \rho_q) R^2 g}{9 \mu_p} \]

Donde \(R \) es el radio de las partículas y los demás parámetros están definidos en el apartado 2.1. Ésta sería la velocidad de una sola partícula en el estado estacionario. Por otro lado el problema transitorio también tiene solución analítica.

\[v(t) = v v_t \]

\[v = 1 - e^{-\tau} ; \quad \tau = \frac{t}{t_0} ; \quad t_0 = \frac{2 \rho_p R^2}{9 \mu} ; \]

Donde \(t_0 \) se define como el tiempo característico.

Para \(t=3t_0 \) obtenemos que \(v=0.95 \) y que por tanto \(v(t) \cong v_t \).

Cuando tenemos muchas partículas en vez de una sola partícula aislada, la velocidad de la partícula se ve afectada por el resto de partículas vecinas. Esto se puede solucionar con una corrección de la velocidad terminal que hemos definido anteriormente. Esta corrección se presenta en Richardson and Zaki (1954) y se conoce como hiding function. La velocidad de una partícula rodeada de otras se define por tanto como:

\[v = v_{1p} (1 - \Phi_p)^5 \quad 0 \leq \Phi_p \leq 0.6 \]

En una gráfica con los datos del experimento de Snabre et al. (2009), junto a la velocidad relativa obtenida por Fluent obtenemos:

Fig 2.3. Evolución de la velocidad de las partículas en función de la concentración.

Fluent calcula la velocidad relativa a partir de Manninen et al. (1996), como hemos definido en el apartado 2.1.4.
Como vemos cuando aumenta la concentración de las partículas la velocidad disminuye casi exponencialmente, tendiendo a 0 cuando se alcanza el packing limit. Esto es lo que Fluent intenta capturar con la viscosidad efectiva de la mezcla, la cual hemos definido en el apartado 2.1.4.

\[
\dot{v}_{qp} = \frac{\rho_p d_p^2 \rho_p - \rho_m}{18 \mu_q \rho_p} \bar{g}(1 - \alpha_p)^{2.5}
\]

La parte inferior donde se ha alcanzado el mayor factor de empaquetamiento, crece a una velocidad \(V^* \), la cual se obtiene de la conservación de la masa para la fase sólida en dicha parte.

\[
V^* = \frac{\alpha_p V}{\alpha_i^* - \alpha_p}
\]

La parte superior donde solo existe una fase líquida, crece con una velocidad \(V \) que sería la velocidad de Stoke corregida por Richardson–Zaki que hemos comentado anteriormente. Si se representan ambas velocidad en una gráfica el resultado es el siguiente:

Fig 2.4. Imagen extraída del artículo Snabre et al.(2009), donde se muestran las instantáneas de los mapas de fluorescencia para los tiempos adimensionales \(t v_1/a_1=50 \) (a) y \(t v_1/a_1=750 \) (b) después de la mezcla inicial. Representación espacio temporal del proceso de sedimentación (c). Las líneas de puntos blancos y negros en c muestran la caída de la concentración en la parte superior y el aumento de esta en la parte inferior, respectivamente. \(v_i \) es la velocidad de Stoke para una partícula y \(a_i \) es el radio de una partícula.
2.3. Simulación numérica del experimento de Snabre et al. (2009)

2.3.1. Definición del problema

Para testear el modelo de mezcla de Fluent, realizaremos una simulación con los datos obtenidos del experimento de Snabre et al. (2009). Las propiedades físicas serán las siguientes: densidad de la partícula \(\rho_p = 1190 \text{ kg m}^{-3} \), tamaño de partícula \(d = 0.19 \text{ mm} \), densidad de la fase líquida \(\rho_q = 890 \text{ kg m}^{-3} \), viscosidad de la fase líquida \(\mu_q = 0.025 \text{ kg m}^{-1} \text{s}^{-1} \).

El dominio computacional es una malla unidimensional con un tamaño de celdilla \(\Delta x = \Delta y = 1.2 \times 10^{-4} \text{ m} \) y una altura total \(z = 0.12 \text{ m} \). Por tanto el número total de celdillas es \(z/\Delta z = 10^3 \).

La concentración volumétrica inicial a lo largo de la malla es la siguiente:

\[
\alpha(z) = 0.4 \quad \text{si} \quad 0 \leq z < 0.1 \text{m} \\
\alpha(z) = 0 \quad \text{si} \quad 0.1 \leq z \leq 0.12 \text{m}
\]

Hemos introducido en la parte superior un espacio donde no existe fase dispersa, a diferencia de lo que se hace experimento de Snabre et al. (2009). Esto lo hemos hecho para observar si Fluent nos permite capturar con precisión la discontinuidad que se va a producir.

2.3.2. Modelos disponibles en Fluent seleccionados para simular el problema

Los parámetros más importantes que hemos seleccionado en Fluent, para simular nuestro problema son los siguientes:

- En el modelo de viscosidad hemos seleccionado laminar. Estamos trabajando a muy bajos números de Reynolds, incluso menores a la unidad, como veremos en el apartado 2.3.3.1.

- En el coeficiente de arrastre (drag coefficient) hemos seleccionado universal drag sin ninguna modificación. Éste calcula la viscosidad de la mezcla como una viscosidad efectiva, basada en viscosidad de la fase primaria y en la concentración de partículas. Según hemos visto en la bibliografía esta es la forma óptima de calcular la viscosidad de la mezcla.
Hemos introducido la fase secundaria como no granular, en vez de una fase sólida como en el experimento de Snabre et al (2009). Por tanto no tendremos que seleccionar ninguna propiedad granular, tan solo el diámetro de las partículas.

Con respecto a las condiciones de contorno para nuestro problema, podemos destacar que la única manera para que no se produzca reversed flow, es con la siguiente condición en la superficie libre: velocity-intel=0.

Los métodos de solución que hemos usado son los más precisos que dispone Fluent:

- Acoplamiento de la velocidad y presión: coupled.
- Discretización espacial del gradiente: least squared cell based.
- Discretización espacial de la presión: body forcé weighted.
- Discretización espacial del momento: quick.
- Discretización espacial de la fracción volumétrica: quick.

2.3.3. Resultados obtenidos

2.3.3.1. Comparación con los resultados del experimento de Snabre et al. (2009)

Para ello vamos a crear una gráfica donde se represente la concentración de la fase líquida en función del tiempo y de la posición ($\alpha_q(z,t)$), para compararla con la figura 2.4.c del experimento de Snabre et al. (2009), donde se representa la concentración de la fase sólida en función del tiempo adimensional y de la posición. Para ello creamos un script en matlab que representa los datos exportados Fluent y el resultado es el siguiente:

![Figura 2.6. Concentración de la fase primaria en una gráfica espacio temporal. El código usado para realizar la gráfica se muestra en el anexo.](image-url)
Comparando estos resultados con los obtenidos experimentalmente por Snabre et al (2009), ver figura 2.4.c, observamos que son bastante exitosos. La única diferencia que podemos destacar está en la zona donde se alcanza el límite de empaquetamiento, ya que la concentración no es constante a lo largo de la malla e igual al límite de empaquetamiento. Ésto es debido al método que estamos usando, que como veremos en el apartado 2.3.3.2, no captura discontinuidades en la parte inferior y por ello se produce un aumento progresivo de la concentración desde el fondo. En la realidad nunca vamos a tener estas discontinuidades que se presentan en el experimento, ya que las mezclas tienden a homogeneizarse de forma continua.

También podemos comparar el número de Reynolds relativo que se obtiene en el experimento de Snabre et al. (2009) y el que nosotros hemos obtenido.

En el experimento se calcula el número de Reynolds a partir de la velocidad de Stoke, la cual hemos definido en el apartado 2.2:

\[
Re = \frac{2R\rho_P v_{1p}}{\rho_q}
\]

Donde \(v_{1p}\) es la velocidad terminal de una partícula y \(R=0.118\)mm es el radio de la partícula, por tanto se obtiene \(Re=1.61\times10^{-3}\).

Para comparar este resultado con el que nosotros hemos obtenido, vamos a introducir la hiding function. También vamos a considerar un diámetro medio de la partícula de 0.19mm, el cual hemos usando en la simulación, por tanto obtenemos:

\[
Re = 1.61\times10^{-3}(1 - 0.4)^5 \frac{190}{236} = 8.20 \times 10^{-5}
\]

En nuestro caso:

\[
Re = \frac{\rho_q |v_q - v_p| d_p}{\mu_q (1 - \alpha_p)^{-2.5}} = \frac{1190 \left(-2 \times 10^{-5} - 1.6 \times 10^{-5} \right) \times 0.19 \times 10^{-3}}{0.025 \times (1 - 0.4)^{-2.5}} = 9.08 \times 10^{-5}
\]

Por tanto comparando nuestro número de Reynolds, obtenido con la simulación y el obtenido experimentalmente en Snabre et al. (2009), vemos un resultado bastante exitoso.

2.3.3.2. Concentración y velocidad a lo largo de la malla

Vamos a representar los valores de concentración y velocidad a lo largo de la malla para la fase dispersa. Estos datos son muy interesantes para detectar posibles fallos en la simulación, en especial en puntos críticos como es nuestra discontinuidad. Por otro lado junto con la figura 2.6 nos sirven para entender cómo evoluciona la mezcla a lo largo del tiempo y de la profundidad o distancia al fondo.
Fig 2.7. Fracción volumétrica de la fase secundaria a los 600s (a), 1200s (b), 1800s (c), 2400s (d), 3000s (e).

En la figura 2.7, se observa una tendencia exponencial de la concentración en la parte inferior de la malla, lógica debido al método de simulación que estamos usando. También podemos ver como la inestabilidad que se produce en la discontinuidad, tiende a cero con el tiempo.
Fig 2.8. Velocidad de la fase secundaria a los 600s (a), 1200s (b), 1800s (c), 2400s (d), 3000s (e).

En la figura 2.8, se observa que la velocidad tiende a 0 en la parte inferior de la malla, llegando a ser 0 en el fondo como es lógico. También vemos que donde la concentración de la fase secundaria es 0 la velocidad de esta fase es 0, ya que no existe. Por otro lado podemos comentar que la inestabilidad que se produce en la discontinuidad se atenúa con el tiempo.

Fig 2.9. Ampliación de las figuras 2.8 b, d para mostrar la inestabilidad que se produce en la discontinuidad.

Esta discontinuidad es debida a los métodos que estamos usando, para discretizar las ecuaciones diferenciales. Al tener un orden de precisión elevado son poco difusivos y por tanto en las discontinuidades se producen inestabilidades de este tipo. El problema de las discontinuidades es que los métodos de discretización de las ecuaciones diferenciales no capturan bien la solución verdadera, cuando hay cambios bruscos en la pendiente o discontinuidades como es este caso.
2.3.4. Simulación con métodos más difusivos

Para intentar reducir la inestabilidad que se produce en las discontinuidades vamos a realizar la simulación con métodos de solución más difusivos.

Los métodos de solución que hemos usado son los siguientes:

- Acoplamiento de la velocidad y presión: coupled.
- Discretización espacial del gradiente: least squared cell based.
- Discretización espacial de la presión: body forcé weighted.
- Discretización espacial del momento: frist order upwind.
- Discretización espacial de la fracción volumétrica: frist order upwind.

![Fig 2.10. Concentración de la fase primaria en una gráfica espacio temporal.](image)

Comparando la figura 2.10 con la 2.6, vemos que el método de solución que se use, no afecta en absoluto ni al tiempo de sedimentación ni a la concentración a lo largo de la malla.

(a) (b)
Comparando los resultados de la figura 2.11 y 2.8 observamos que al comienzo de la simulación, cuando se produce la sedimentación se reduce la amplitud de la inestabilidad. En cambio cuando ya se ha producido la sedimentación, con estos métodos de solución se aumenta la amplitud de la inestabilidad.

Por tanto podemos decir que para nuestro caso, los métodos usados no influyen notablemente en el resultado y que es conveniente escoger métodos con menor orden de precisión, ya que son menos costosos computacionalmente hablando.

2.4. Simulación en condiciones hidráulicas reales (río Guadalquivir)

2.4.1. Definición de la simulación

Una vez realizada la simulación numérica, para el experimento de Snabre et al. (2009) y comprobado que se obtienen resultados bastante exitosos, vamos a realizar una simulación de sedimentación en un estanque idealizado. Se considerarán las condiciones hidráulicas y sedimentarias características del río Guadalquivir.

Densidad del agua 1000 kg/m3, viscosidad dinámica 0.001 kg/m*s, por otro lado la fracción másica de arena es 16g/l, obtenido de la tesis de Eva Contreras et al. (2012). Pasando esto a fracción volumétrica a partir de la densidad de la arena 2650 kg/m3, obtenemos una fracción volumétrica de 6×10^{-3} en tanto por uno. En este caso el inconveniente será la diferencia de concentraciones entre la parte inferior donde se alcanza el mayor factor de empaquetamiento y la parte superior donde tendremos una concentración muy baja. Por tanto resulta interesante observar cómo se comporta Fluent ante el problema de disparidad de características, ya que pretendemos resolver los límites $0 \leq \alpha_p \leq \alpha_{max}$.

El tamaño de grano adimensional d_* tiene valores comprendidos entre 0.4 y 4.8. Este concepto de tamaño de grano adimensional es muy usado en los procesos de erosión y sedimentación, el cual tiene la siguiente la siguiente expresión.

$$d_* = d_p \left[\frac{g \rho_q (\rho_p - \rho_q)}{\mu^2} \right]^{1/3} = \left(\frac{3}{4} C_p Re^2 \right)^{1/3}$$

Donde d_p es el tamaño de grano, μ es la viscosidad dinámica, ρ_p es la densidad de las partículas de arena, ρ_q es la densidad del agua y g es la aceleración de la gravedad. Los valores de d_* que se encuentran en los depósitos de sedimento del Guadalquivir son $d_*=0.19$mm para arena fina y 0.016mm para limo. En la simulación que vamos a realizar, usaremos un tamaño de grano de 0.19mm.
En la mecánica de fluidos generalmente se suele trabajar con gráficas de Cd en función del número de Re, como la mostrada en la figura 2.11. Pero en nuestro caso resulta más útil utilizar gráficas donde se muestra la velocidad de sedimentación en función del diámetro adimensional, ya que es el parámetro de cierre en la ecuación de la fase sólida. En la figura 2.13 se puede ver cómo evoluciona la velocidad de sedimentación en función del diámetro adimensional, que está directamente relacionado con Cd.

![Fig 2.12. Coeficiente de arrastre Cd en función del número Re, corrigiendo los efectos de la pared. Las ecuaciones para su representación han sido obtenidas de Phillii P. et al. (2003).](image1)

Para realizar esta simulación podemos usar los mismos métodos que hemos definido en el apartado 2.3.2, tan solo vamos a comprobar que la fórmula que ofrece el modelo universal drag, para calcular el coeficiente de arrastre Cd, sea la correcta en este caso.

![Fig 2.13. Velocidad de sedimentación adimensional en función del tamaño de grano adimensional.](image2)
Para comprobar esto vamos a usar las formulas que se presentan en Phillip P. et al. (2003) para obtener Cd en función del número de Re. A partir de estas fórmulas se ha obtenido la figura 2.12.

Para ver que fórmula usar necesitaremos calcular una aproximación del número de Reynolds (Re), ya que dependiendo del número de Reynolds (Re) se usa una fórmula u otra para calcular Cd, ver Phillip P. et al. (2003).

El primer paso es calcular la velocidad de sedimentación o velocidad terminal, adimensional. Esta ha sido obtenida mediante datos experimentales y es válida para valores de

\[
d_* < 1200.
\]

\[
u_* = \frac{18}{(d_*)^{\frac{0.936d_*+1}{d_*+1}} \left(0.317 \frac{d_*}{d_*} + 0.898\right) + \frac{10}{d_*}}^{0.449} \left(-1.114\right)
\]

A partir de esta fórmula, realizando un estudio dimensional del problema podemos obtener la velocidad de sedimentación de una partícula en un fluido. El problema depende de las siguientes variables g, \(\mu_p, \rho_q, \rho_p\), las cuales tendremos que tener en cuenta para realizar el estudio dimensional.

\[
u_* = \frac{3}{g \nu \left(\rho_p - \rho_q\right)} \left[\frac{18}{(d_*)^{\frac{0.936d_*+1}{d_*+1}} \left(0.317 \frac{d_*}{d_*} + 0.898\right) + \frac{10}{d_*}}^{0.449} \left(-1.114\right)\right]
\]

En lugar de usar la velocidad de Stoke que definimos en el apartado 2.2, hemos usado esta fórmula para calcular la velocidad de sedimentación, ya que es válida para un amplio rango de valores de \(d_*\). Estas dos velocidades representan lo mismo, la velocidad de sedimentación de una partícula en un fluido, una vez alcanzo el estado estacionario.

A partir de esta fórmula, de los datos de viscosidad, densidad del agua, y del máximo tamaño de grano con el que vamos a trabajar, (0.19mm) obtenemos:

\[
Re = \frac{\rho_p d_p u_*}{\mu_q} = \frac{1000 \times 1.9 \times 10^{-4} \times 0.022}{0.001} = 4.18
\]

Si calculamos el número de Reynolds para el menor tamaño de grano con el que vamos a trabajar obtenemos:

\[
Re = \frac{\rho_q d_p u_*}{\mu_q} = \frac{1000 \times 1.6 \times 10^{-5} \times 2.43 \times 10^{-4}}{0.001} = 3.88 \times 10^{-3}
\]

Hemos usado los datos de viscosidad y densidad del agua clara, así como la fórmula de la velocidad terminal de una partícula aislada, ya que al tener una concentración tan baja de arena, la viscosidad efectiva y densidad de la mezcla será prácticamente la misma que la del agua.

Para bajos números de Re, se ha comprobado en el apartado 2.3 que el modelo universal drag funciona correctamente. Por tanto ahora nos quedaría comprobar si para números de Re más grandes también es útil este modelo.

La fórmula de Cd a partir de la cual se obtiene \(u_*\) viene dada por:

\[
C_D = \frac{24}{Re} \left[1 + 0.1315 Re^{(0.82 - 0.05 \log(Re))}\right] \quad si \quad 0.01 \leq Re < 20
\]
\[C_D = \frac{24}{Re} (1 + 0.1935 Re^{0.6305}) \]
\[\text{si } 20 \leq Re \leq 260 \]

Por otro lado, como se dijo en el apartado 2.1.4, la fórmula que usa el modelo universal drag para estos números de Re es:

\[C_D = \frac{24}{Re} (1 + 0.1 Re^{0.75}) \]

Fig 2.14. Comparación del Cd obtenido por Fluent y el que se presenta en Phillip P. et al. (2003).

Como se puede ver, ambas ecuaciones obtienen prácticamente los mismos valores de Cd en función de Re. Por tanto el modelo universal drag es válido para este caso y no tendremos que recurrir a otros modelos disponibles en Fluent o escribir el actual mediante UDF.

Por otra parte, también es interesante calcular la longitud de la malla necesaria para alcanzar la velocidad terminal de las partículas. El tiempo característico está en el apartado 2.2 y es

\[t_0 = \frac{2 \rho_p R^2}{9 \mu} = 5.3 \times 10^{-3} \text{s} \]

El tiempo necesario para alcanzar la velocidad terminal es aproximadamente \(t = 3t_0 = 0.0159 \text{s} \). Por tanto, teniendo en cuenta que la máxima velocidad con la que vamos a trabajar es 0.03m/s, la longitud mínima que deberá tener la malla para alcanzar la velocidad terminal será:

\[L = 0.0159 \times 0.03 = 4.77 \times 10^{-4} \text{m} \]

Tras ver que la longitud que necesitamos es muy pequeña, usaremos una malla unidimensional con un tamaño de celda \(\Delta x = \Delta y = 1 \times 10^{-4} \text{m} \) y una altura total \(z = 0.1 \text{m} \). Por tanto el número total de celdillas es \(z/\Delta z = 1000 \).

2.4.2. Resultados obtenidos

A primera vista, viendo los resultados obtenidos en la figura 2.15, parece que la simulación nos ofrece unos resultados coherentes. La concentración va disminuyendo a lo largo del tiempo, hasta prácticamente ocupar una parte insustancial de la malla, ya que nuestra concentración inicial de arena era muy baja. Pero en cambio en la figura 2.16 vemos que no se cumple la ecuación de conservación de la masa en toda la malla, ya que la fracción volumétrica disminuye con el tiempo y no estamos ante un flujo compresible. En el primer segundo de simulación, la
fracción volumétrica se mantiene constante, pero a partir de entonces vemos que la fracción volumétrica va disminuyendo linealmente con el tiempo hasta hacerse 6 veces menor a la inicial.

Fig 2.15. Representación de la fracción volumétrica de arena en función de la posición y del tiempo, con Δt=0.1s. Las líneas de la derecha representan los instantes de tiempo iniciales y las de la izquierda los instantes de tiempo finales, cuando la mezcla casi ha sedimentado.

Fig 2.16. Representación de la fracción volumétrica en toda la malla, a lo largo del tiempo, con Δt=0.1s.

2.4.3. Soluciones adoptadas ante el problema presentado

Ya que la ecuación de conservación de la masa no se cumple a partir del primer segundo de simulación, cuando la arena todavía está en el 80% de la malla aproximadamente, vamos a realizar la simulación reduciendo el tamaño de celda en toda la malla y disminuyendo el paso de tiempo.

Realizando la simulación con una malla 10 veces más pequeña en todas las direcciones los resultados que hemos obtenidos son idénticos. Por otro lado reduciendo el paso de tiempo de 0.1 s a 0.001s tampoco se conserva la masa como se muestra en la figura
2.17, además también observamos que la fase sólida no llega a sedimentar totalmente lo cual no tiene sentido físico, como se puede ver en las figura 2.18, 2.19.

Fig 2.17. Representación de la fracción volumétrica en toda la malla, a lo largo del tiempo, con Δt=0.001s.

Fig 2.18. Representación de la fracción volumétrica de arena en función de la posición y del tiempo, con Δt=0.001s.
Viendo que el problema no está ni en la malla ni en el paso de tiempo, vamos a realizar la simulación introduciendo como condición inicial la fracción volumétrica de arena que debe existir en el fondo de la malla. Para ello partiremos la malla que hemos usado anteriormente a una distancia de 0.01mm del fondo y en la parte inferior introduciremos una fracción volumétrica de arena igual a 1.

Fig 2.19. Representación de la fracción volumétría en función de la posición y del tiempo.

Fig 2.20. Representación de la fracción volumétrica de arena en función de la posición y del tiempo, con Δt=0.01s.
Fig 2.21. Representación de la fracción volumétrica en toda la malla, a lo largo del tiempo, con $\Delta t=0.01s$.

Como se puede observar sigue sin cumplirse la conservación de la masa, y por tanto podemos concluir que el modelo de mezcla disponible en Fluent no es útil cuando tenemos grandes discontinuidades (en la parte inferior pasamos de una fracción volumétrica de 0.006 a 1).
Capítulo 3. Aplicación del modelo Euleriano disponible en Fluent para el problema de sedimentación

<table>
<thead>
<tr>
<th>3.1.</th>
<th>Modelo Euleriano en Fluent</th>
<th>...</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1. Introducción</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.1.2. Ecuaciones de conservación</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.1.2.1. Continuidad</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2. Conservación de cantidad de movimiento</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.1.3. Concentración de área interfacial</td>
<td>...</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>3.1.4. Coeficiente de intercambio en la interfase</td>
<td>...</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3.1.4.1. Coeficiente de intercambio en fluido-fluido (drag)</td>
<td>...</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3.1.5. Fuerza de sustentación (Lift force)</td>
<td>...</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3.1.6. Fuerzas de lubricación en la pared (wall lubrication force)</td>
<td>...</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3.1.7. Fuerza de dispersión turbulenta (turbulent dispersion force)</td>
<td>...</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3.1.8. Masa virtual (virtual mass)</td>
<td>...</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3.2.</td>
<td>Simulación numérica del experimento de Snabre et al. (2009)</td>
<td>...</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1. Definición del problema</td>
<td>...</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3.2.2. Resultados obtenidos</td>
<td>...</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3.3.</td>
<td>Simulación en condiciones hidráulicas reales (río Guadalquivir)</td>
<td>...</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1. Definición del problema</td>
<td>...</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3.3.2. Resultados obtenidos</td>
<td>...</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>
3.1. Modelo Euleriano en Fluent

3.1.1. Introducción

El modelo Euleriano es el más complejo de los modelos multifásicos de Fluent y por tanto para casos difíciles resulta más óptimo. Resuelve las ecuaciones de cantidad de movimiento y continuidad para cada fase, compartiendo la misma presión todas las ellas.

El acoplamiento entre las fases se logra a través de los coeficientes de intercambio en la interfase. La forma de realizar este acoplamiento depende del tipo de fases que intervengan, flujos granulares (sólido-fluido) se manejan de manera diferente que flujos no granular (fluido-fluido). Para flujos granulares, las propiedades se obtienen de la teoría cinética, pero en nuestros casos la fase sólida no será tomada como granular, por tanto se simplificará bastante la simulación.

Con el modelo Euleriano el número de fases secundarias sólo está limitado por la memoria y convergencia. Cualquier número de fases secundarias se puede modelar, siempre que haya suficiente memoria. Para flujos multifásicos complejos, es posible que la solución esté limitada por la convergencia.

3.1.2. Ecuaciones de conservación

3.1.2.1. Continuidad

La ecuación de continuidad para cada fase, en el modelo Euleriano viene dada por la siguiente expresión:

\[
\frac{1}{\rho_{rq}} \left(\frac{\partial}{\partial t} (\alpha_q \rho_q) + \nabla \cdot (\alpha_q \rho_q \vec{v}_q) \right) = \sum_{p=1}^{n} \bar{m}_{pq} - \bar{m}_{qp}
\]

Donde \(\rho_{rq}\) es la densidad de la fase de referencia q, o la densidad media de la fase q en el volumen de referencia, cuando este volumen este ocupado por más de una fase. \(\vec{V}_q\) es la velocidad de la fase q y \(\bar{m}_{pq}\) es la trasferencia de masa de la fase p a la q, en nuestro caso \(\bar{m}_{pq} = 0\) ya que no tenemos dos fluidos miscibles. A partir de esta ecuación sabiendo que la suma de fracciones volumétricas en el volumen de referencia es 1, se obtiene la fracción volumétrica de cada fase. Por otro lado, la ecuación para la fracción volumétrica tiene esta forma.

\[v_q = \int \alpha_q dV \]

La densidad media de la fase q en el volumen de referencia o también llamada densidad efectiva de la fase q, que se define como:

\[\bar{\rho}_q = \alpha_q \rho_q \]

3.1.2.2. Conservación de cantidad de movimiento

La conservación de la cantidad de movimiento para la fase q se define como:
\[
\frac{\partial}{\partial t} \left(\alpha_q \rho_q \bar{v}_q \right) + \nabla \cdot (\alpha_q \rho_q \bar{v}_q \bar{v}_q) = -\alpha_q \nabla p + \nabla \cdot \bar{t}_q + \alpha_q \rho_q \ddot{g} + \sum_{p=1}^{n} \left(k_{pq} (\bar{v}_p - \bar{v}_q) + m_{pq} \bar{v}_{pq} - \dot{m}_{qp} \bar{v}_{qp} \right) + (\bar{F}_q + \bar{F}_{lift,q} + \bar{F}_{wi,q} + \bar{F}_{vm,q} + \bar{F}_{td,q})
\]

Donde \(\bar{t}_q \) es el tensor de esfuerzos viscosos de la fase q:

\[
\bar{t}_q = \alpha_q \mu_q (\nabla \bar{v}_q + \nabla \bar{v}_q^T) + \alpha_q \left(\lambda_q - \frac{2}{3} \mu_q \right) \nabla \cdot \bar{v}_q \bar{I}
\]

Aquí \(\mu_q \) y \(\lambda_q \) son las viscosidades dinámica y másica respectivamente de la fase q, \(\lambda_q \) vale 0 al considerar la fase dispersa como no granular. \(\bar{F}_q \) es la fuerza de cuerpo, \(\bar{F}_{lift,q} \) es la fuerza de sustentación, \(\bar{F}_{wi,q} \) es la fuerza de lubricación de pared, \(\bar{F}_{vm,q} \) es la fuerza de masa virtual, \(\bar{F}_{td,q} \) es la fuerza de dispersión turbulenta. \(\bar{R}_{pq} \) representa el intercambio de fuerzas entre las fases p, q y P es la presión compartida por todas las fases.

\(\bar{V}_{pq} \) es la velocidad en la interfase, definida de la siguiente manera:

\[
\begin{align*}
\text{Si } & \dot{m}_{qp} > 0 & \bar{V}_{pq} = \bar{V}_q \\
\text{Si } & \dot{m}_{qp} < 0 & \bar{V}_{pq} = \bar{V}_p
\end{align*}
\]

\(\bar{R}_{pq} \) depende de la fracción volumétrica, presión, cohesión y otros efectos. Fluent usa esta expresión para calcularla:

\[
\sum_{p=1}^{n} \bar{R}_{pq} = \sum_{p=1}^{n} k_{pq} (\bar{v}_p - \bar{v}_q)
\]

donde \(k_{pq} \) representa el coeficiente de intercambio de cantidad de movimiento en la interfase, que definiremos en el apartado 3.1.4.1.

3.1.3 Concentración de área interfacial

La concentración de área interfacial se define como la zona interfacial entre dos fases por unidad de volumen de mezcla. Éste es un parámetro importante para la predicción de transferencias de masa, cantidad de movimiento y energía, a través de la interfaz entre las fases. Cuando utilizamos el modelo multifásico Eulerano con fases secundarias no granulares, Fluent puede calcular el área interfacial de dos formas:

- Usando la ecuación de transporte escalar para describir la concentración de área interfacial. Esta formulación solo se suele usar para el modelo de mezcla.
- Utilizando una relación algebraica entre un diámetro de la partícula y la concentración especificada de área interfacial.

Los modelos área interfacial algebraicos se derivan de la relación superficie/volumen. \(A_p \) para una partícula esférica es:

\[
A_p = \frac{\pi d_p^2}{4 \pi d_p^3} = \frac{6}{d_p}
\]
Donde d_p es el diámetro de la partícula, los modelos algebraicos disponibles en Fluent cuando usamos el modelo multifásico Euleriano con flujos no granulares son 4:

- Particle Model:

$$A_i = \alpha_p A_p = \frac{6\alpha_p}{d_p}$$

- Symmetric Model

$$A_i = \frac{6\alpha_p(1 - \alpha_p)}{d_p}$$

- Ishii Model (solo para flujos en ebullción)

$$A_i = \frac{6(1 - \alpha_p)\min(\alpha_p, \alpha_{p,crit})}{d_p(1 - \min(\alpha_p, \alpha_{p,crit}))}$$

$\alpha_{p,crit}$ es elegido como 0.25

- User-defined (solo para flujos en ebullción)

3.1.4. Coeficiente de intercambio en la interfase

3.1.4.1. Coeficiente de intercambio en fluido-fluido (drag)

Para los flujos líquido-líquido, cada fase secundaria se asume como gotas o burbujas. Esto influye a la hora de asignar a cada fluido una fase particular. Por ejemplo, en los flujos en los que hay cantidades desiguales de dos fluidos, el fluido predominante debe ser modelado como el fluido primario, ya que probablemente el fluido más escaso forme gotas o burbujas. El coeficiente de intercambio de este tipo de mezclas se puede escribir de la siguiente forma general:

$$k_{pq} = \frac{\rho_p f}{6\tau_p} d_p A_i$$

donde A_i es el área interfacial definida en el apartado 3.1.3. f y τ_p son la función de resistencia y el tiempo de relajación de la partícula respectivamente, definidos en el apartado 2.1.4.

3.1.5. Fuerza de sustentación (Lift force)

Para flujos multifásicos, Fluent puede incluir el efecto de las fuerzas de sustentación en las partículas de la fase secundaria. Estas fuerzas de elevación actúan sobre una partícula debido principalmente a gradientes de velocidad en la fase primaria. La fuerza de sustentación será más significativa para las partículas más grandes, pero el modelo de Fluent asume que el diámetro de partícula es mucho menor que la separación entre partículas. Por lo tanto, la inclusión de las fuerzas de sustentación no es apropiada para partículas muy juntas o para partículas muy pequeñas.

Para nuestros casos estas fuerzas son despreciables debido a la baja velocidad que tenemos, por tanto no las tendremos en cuenta en nuestros casos.

De Drew (1993) la fuerza de sustentación que actúa sobre una fase secundaria q se puede calcular como:

$$\vec{F}_{lift} = -C_l \rho_q \alpha_p (\vec{V}_q - \vec{V}_p) \times (\vec{V} \times \vec{V}_q)$$
C_f es el coeficiente de sustentación que se puede calcular con los siguientes modelos disponibles en Fluent:

- Moraga Lift Force Model
- Saffman-Mei Lift Force Model
- Legendre-Magnaudet Lift Force Model
- Tomiyama Lift Force Model
- User-Defined Function

3.1.6. Fuerzas de lubricación en la pared (wall lubrication force)

En el modelo Euleriano de Fluent se puede incluir el efecto de las fuerzas de lubricación de la pared en las fases secundarias. La fuerza de lubricación de la pared tiende a empujar las fases secundarias lejos de las paredes. Por ejemplo, en un flujo ascendente en una tubería vertical, la fase dispersa tiende a concentrarse en una región cerca, pero no inmediatamente adyacente a, la pared.

La fuerza de lubricación en la pared en una fase secundaria tiene la siguiente forma:

$$\vec{F}_{wl} = C_{wl} \frac{\rho_p \alpha_p}{\nabla} \left(\vec{v}_q - \vec{v}_p \right)^2 \vec{n}_w$$

c_{wl} es el coeficiente de lubricación en la pared, la componente tangencial de la velocidad relativa en la pared es:

$$\left| \left(\vec{v}_q - \vec{v}_p \right) \right|$$

\vec{n}_w es el vector normal en la pared apuntando hacia fuera de ella.

Para calcular el coeficiente de lubricación en la pared Fluent dispone de los siguientes modelos, los cuales no se describirán ya que en nuestros casos no ha sido necesario considerar esta fuerza, al ser insignificante con respecto a las demás:

- Antal et al. Model
- Tomiyama Model
- Frank Model
- Hosokawa Model
- User defined fuction

3.1.7. Fuerza de dispersión turbulenta (turbulent dispersion force)

Nuestros modelos han sido laminares por tanto no tendremos que considerar esta cuestión

3.1.8. Masa virtual (virtual mass)

Este efecto solo es significante cuando la diferencias de densidades es muy grande. Como en nuestro caso esto no ocurre no las tendremos en cuenta.

La fuerza de masa virtual se define como:

$$\vec{F}_{vm} = 0.5 \rho_q \alpha_p \left(\frac{d_q \vec{v}_q}{dt} - \frac{d_p \vec{v}_p}{dt} \right)$$

$$\frac{d_q(\phi)}{dt} = \frac{\partial(\phi)}{dt} + (\vec{V}_q \cdot \nabla) \phi$$
3.2. Simulación numérica del experimento de Snabre et al. (2009)

3.2.1. Definición del problema

Para realizar esta simulación, los datos que usaremos respectivos a la malla y a las propiedades de la mezcla serán los mismo que se describieron en el aparto 2.3.1. Por otro lado, los modelos que hemos usado para simular el problema son los mismos que se describieron en el apartado 2.3.2, salvo que en este caso tenemos más variables que influye en la simulación. Estas variables son las siguientes:

- Para calcular la concentración de área interfacial, que es necesaria para calcular el coeficiente de intercambio entre las fases, hemos usado el modelo el modelo algebraico de la partícula (particle model). Este es un modelo estándar y válido para un amplio rango de casos, incluido el nuestro.
- Con respecto a la fuerzas de masa virtual, fuerzas de sustentación, fuerzas de dispersión turbulenta, fuerzas de lubricación en la pared, hemos desmarcado todas estas casillas para que Fluent no las tenga en cuenta, por los motivos que hemos comentado en el apartado 3.1.

3.2.2. Resultados obtenidos

Para comparar los resultados obtenidos con el experimento de Snabre et al. (2009), utilizaremos una gráfica espacio temporal, donde se represente la fracción volumétrica de agua, el código utilizado para realizar dicha gráfica es el mimo que se usó en el apartado 2.3.3.1.

Comparando estos resultados con los que se muestran en la figura 2.4.c del experimento de Snabre, observamos que en la zona donde se alcanza el límite de empaquetamiento, la concentración no es constante a lo largo de la malla e igual al límite de empaquetamiento. Esto es debido al método que estamos usando, en el cual no se produce una discontinuidad en la parte inferior (ver figura 3.2), sino que la concentración va a aumentando de forma continua. Otra diferencia notable que no sucedía en el modelo de mezcla está en el tiempo de sedimentación, como se puede ver en la figura 3.1 el tiempo de sedimentación es aproximadamente 1100 s, mientras que en el experimento es aproximadamente 1400 s (obtenido de la figura 2.4.c). Esta diferencia se produce porque el modelo Euleriano es un modelo general, donde se tienen en cuenta todos los parámetros que afectan a los flujos bifásicos y en nuestro caso no es necesario usar tantos parámetros ya que es un caso simple. Por esta razón el modelo de mezcla funciona mejor este caso, ya que es un modelo simplificado del modelo Euleriano.
Fig 3.1. Resultados de representar la concentración de la fase primaria en una gráfica espacio temporal.

Por otro lado vamos a representar los valores de concentración y velocidad a lo largo de la malla para la fase dispersa (figuras 3.2 y 3.3). Estos datos son muy interesantes para detectar posibles fallos en la simulación, en especial en puntos críticos como es nuestra discontinuidad. Por otro lado junto con la figura 3.1 nos sirven para entender cómo evoluciona la mezcla a lo largo del tiempo y de la posición.

En la figura 3.3, se observa una tendencia exponencial de la concentración en la parte inferior de la malla, lógica debido al método de simulación que estamos usando. En la figura 3.2, se observa que la velocidad tiende a 0 en la parte inferior de la malla, llegando a ser 0 en el fondo como es lógico. También vemos que donde la concentración de la fase secundaria es 0 la velocidad de esta fase es 0, ya que no existe.

Comparando las figuras 3.2, 3.3 y las figuras 2.7, 2.8, observamos una ventaja del modelo Euleriano. El modelo Euleriano capta perfectamente la discontinuidad que se produce en nuestro problema, ya que no producen las oscilaciones que se producían en el modelo de mezcla.
Fig 3.2. Representación de la velocidad de la fase secundaria a los 700s (a), 1100s (b), 1700s (c), 2000s (d).

Fig 3.3. Representación de la fracción volumétrica de la fase secundaria a los 700s (a), 1100s (b), 1700s (c), 2000s (d).

3.3. Simulación en condiciones hidráulicas reales (río Guadalquivir)

3.3.1. Definición del problema

Las condiciones hidráulicas y la malla usada para realizar la simulación son las mismas que se han usado en el modelo de mezcla (apartado 2.4.1). El paso de tiempo que usaremos será de 0.01s. Por otro lado, los modelos que hemos usado para simular el problema, son los mismos.
que se describieron en el apartado 2.3.2, salvo que en este caso tenemos más variables que influye en la simulación. Estas variables son las siguientes:

- Para calcular la concentración de área interfacial, la cual es necesaria para calcular el coeficiente de intercambio entre las fases, hemos usado el modelo algebraico de la partícula (particle model). Este es un modelo estándar y válido para un amplio rango de casos, incluido el nuestro.
- Con respecto a la fuerzas de masa virtual, fuerzas de sustentación, fuerzas de dispersión turbulenta, fuerzas de lubricación en la pared, hemos desmarcado todas estas casillas para que Fluent no las tenga en cuenta, por los motivos que hemos comentado en el apartado 3.1.

3.3.2. Resultados obtenidos

A primera vista, viendo los resultados obtenidos en la figura 3.4 y 3.5, parece que la simulación nos ofrece unos resultados coherentes. La concentración va disminuyendo a lo largo del tiempo, hasta prácticamente ocupar una parte insignificante de la malla, ya que nuestra concentración inicial de arena era muy baja. Pero en cambio en la figura 3.6 vemos que no se cumple la ecuación de conservación de la masa en toda la malla, ya que la fracción volumétrica tiene un valor inicial de 0.006 y tras un segundo de simulación esta llega a tener un valor de 0.0065. Aunque la diferencia sea menor que en el modelo de mezcla, la ecuación de conservación de la masa sigue sin cumplirse y la simulación por tanto no es fiable.

![Fig 3.4. Representación de la fracción volumétrica de arena en función de la posición y del tiempo. Las líneas de la derecha representan los instantes de tiempo iniciales y las de la izquierda los instantes de tiempo finales, cuando la mezcla casi ha sedimentado.](image)
3.3.3. Soluciones adoptadas ante el problema presentado

Realizando la simulación con un tamaño de celda más pequeño y un paso de tiempo inferior, los resultados obtenidos son idénticos a los anteriores y por tanto no merece la pena presentarlos. Por otro lado introduciendo como condición inicial la fracción volumétrica de arena que debe existir en el fondo de la malla, los resultados mejoran bastante, esto se puede ver en la figura 3.8. Para ello partiremos la malla que hemos usado anteriormente a una distancia de 0.01mm del fondo y en la parte inferior introduciremos una fracción volumétrica de arena igual a 1.

Fig 3.5. Representación de la fracción volumétrica en función de la posición y del tiempo.

Fig 3.6. Representación de la fracción volumétrica en toda la malla, a lo largo del tiempo.
Fig 3.7. Representación de la fracción volumétrica de arena en función de la posición y del tiempo. Las líneas de la derecha representan los instantes de tiempo iniciales y las de la izquierda los instantes de tiempo finales, cuando la mezcla casi ha sedimentado.

Fig 3.8. Representación de la fracción volumétrica en toda la malla, a lo largo del tiempo. Como se puede ver en la figura 3.8, la conservación de la masa se cumple perfectamente al introducir la condición inicial que hemos comentado anteriormente, y por tanto los resultados de la figura 3.7 son fiables.
Capítulo 4. Análisis de la componente hidráulica en la presa de Marmolejo

4.1.	Definición de la simulación	47
4.2.	Resultados obtenidos	48
4.3.	Zona de sedimentación	56
4.4.	Influencia de la altura de la compuerta (salida) en la componente hidráulica	65
4.1. Definición de la simulación

Es interesante conocer la componente hidráulica para intuir el movimiento de las partículas de sedimento arrastradas por el agua. Para conocer cómo es el movimiento dentro de la presa realizaremos una primera simulación solo con agua, ya que hemos visto que el modelo multifásico no funciona bien con concentraciones bajas de sedimento. El objetivo principal es observar si se produce recirculación en la salida y los valores de velocidad y presión para distintos caudales. Las dimensiones de la presa son las siguientes:

![Fig 4.1 Dimensiones de la presa](image)

Los caudales que lleva el río Guadalquivir a su paso por Marmolejo están entre 50 y 3000 m3/s, por otro lado en esta zona el cauce del río es aproximadamente de 150 m. A partir de estos datos sabiendo que nuestra altura a la entrada es de 1 m, obtenemos el valor de la velocidad en función del caudal.

Para comprobar que la malla usada es la correcta, se han comparado los resultados obtenidos para cinco mallas distintas en el caso más desfavorable (el de máximo caudal). En las distintas mallas se ha modificado la distancia adimensional a la pared que viene definida por la siguiente expresión:

$$y^+ = \frac{y \sqrt{\frac{\tau_{wall}}{\rho}}}{v}$$

Los valores de y^+ para la cinco mallas a lo largo del fondo y de la pared de la presa se pueden ver en la figura 4.1. En las mallas 3, 4, 5 se ha hecho un degradado tanto en la dirección vertical como horizontal para obtener en la parte inferior derecha una y^+ mínima. Después comparando los resultados para las distintas mallas se observa que en las mallas 1, 2 se obtiene resultados diferentes entre ellas y diferentes también a los obtenidos en las mallas 3, 4, 5. Por otro lado los resultados obtenidos en las mallas 3, 4, 5 sí son prácticamente idénticos.
Fig 4.2 Valores de y^+ en el fondo de la presa y en la pared de esta.

La malla que se ha usado ha sido a la malla 3 ya que aporta los mismos resultados que la 4, 5 y necesita menos coste computacional.

a)

Fig 4.3 Malla empleada a la entrada de la presa (a), y malla empleada a la salida de la presa (b)

4.2. Resultados obtenidos

Para caracterizar el campo de velocidad recurriremos a los contorno de velocidad aplicando en la representación gráfica una escala de 1:10 en el eje x, para favorecer una clara representación de resultados.

Como se puede ver en la figura 4.4 al inicio tenemos una velocidad máxima del fluido ya que la sección de paso es mínima, por otro lado también vemos que la velocidad no es constante y se forman lenguas a causa de la capa límite (esto se puede ver mejor en la figura 4.6). Otra zona donde tenemos velocidades elevadas es en la salida, pero menores que a la entrada ya que la sección de paso que hemos introducido es 5 veces mayor.
Si comparamos las distintas figuras vemos que los campos de velocidad son prácticamente proporcionales al caudal, aunque las lenguas que se producen son un poco más esbeltas conforme aumentamos el caudal.
Fig 4.4. Contornos de velocidad adimensionales para los distintos caudales 50, 150, 250, 350, 650, 1250, 1850, 2150, 2750, 3050 m³/s. Para que los contornos sean adimensionales se ha usado la velocidad máxima para cada caudal.

Es interesante saber si se producirá recirculación a la salida, ya que nos indicará si el sedimento saldrá de la presa arrastrado por la corriente o en cambio recirculará e irá quedando sedimentado en el fondo. Para ello vamos a representar las líneas de corriente para distintos caudales como se muestra en la figura 4.5.

Como se observa en la figura 4.5 se producen vórtices a la salida y estos son más grandes conforme aumentamos el caudal como era de esperar, por tanto esto quiere decir que el sedimento no será arrastrado por la corriente cuando tengamos altos caudales, ya que se producen unos vórtices que hacen que el sedimento no salga de la presa.

a) b)
Fig 4.5. Líneas de corriente a la salida de la presa a) Q=50 m³/s, b) Q=150 m³/s, c) Q=250 m³/s, d) Q=350 m³/s, e) Q=650 m³/s, f) Q=1250 m³/s, g) Q=2150 m³/s, h) Q=2450 m³/s, i) Q=3050 m³/s.

En la figura 4.6 b), c) apreciamos como en la parte superior tenemos un aumento de la velocidad debido a la descarga y en la parte inferior se invierte la dirección de la velocidad debido a la recirculación que se produce. También vemos como a mayor caudal la componente negativa tiene un valor y rango mayor, esto es debido a que el remolino aumenta con el caudal como también se veía en la figura 4.5.
Fig 4.6. Velocidad a 2 metros de la salida en función de la altura a) magnitud, b) horizontal, c) vertical.

En la figura 4.7 a), b), se ven las lenguas que se producen debido a la capa límite, como también vimos en los contornos de velocidad. Lógicamente a mayor caudal estas curvas son más esbeltas.

En la figura 4.7 c) vemos como la velocidad vertical es negativa lo cual será muy importante a la hora de entender cómo se produce la sedimentación.
Fig 4.7. Velocidad a 50 metros de la salida en función de la altura a) magnitud, b) horizontal, c) vertical.

Al igual que hemos hecho con los contornos de velocidad podemos hacer con los contornos de presión, para caracterizar el campo de presión en la presa, esto se muestra en la figura 4.8. Se observa que la presión está dominada por la altura de la presa y no por el caudal,
Fig 4.8. Contornos de Presión para los distintos caudales 50, 150, 250, 350, 650, 1250, 1850, 2450, 2750, 3050 m³/s.
4.3. Zona de sedimentación

En las simulaciones numéricas de transporte de sedimento en suspensión es necesario identificar la condición en la cual las partículas de sedimento precipitan hacia el fondo. El problema consiste en determinar la condición del flujo en la cual la sedimentación ocurre.

Uno de los primeros estudios fue el de Bagnold (1966), el declaró que la sedimentación se producía si el valor de la velocidad cortante \(u^* \) no excede un valor límite, la fórmula que propuso es la siguiente:

\[
 u^* < \frac{w}{1.25}
\]

Donde \(w \) es la velocidad de sedimentación de las partículas descrita en el apartado 2.2, la cual tiene un valor para nuestro caso de 0.022ms/s

El problema de esta fórmula es que no funciona bien para valores de \(Re^* = \frac{u^*d}{v} \) menores a 1, y nosotros estamos en esta zona.

Uno de los primeros fue la teoría del régimen de lecho rugoso, en ella se afirma que la probabilidad de que no exista sedimentación en función de la velocidad, sigue la siguiente expresión:

\[
 P = 0.5 - 0.5 \sqrt{1 - e^{-\frac{2w^2}{\pi u^*}}}
\]

La figura 1.9 es una representación de \(P \) frente \(w/u^* \), en ella se muestra que \(P \) decrece rápidamente con \(w/u^* \). Por ejemplo para \(P \approx 16\% \), \(w/u^* = 1 \); \(P \approx 2\% \), \(w/u^* = 2 \); \(P \approx 0.08\% \), \(w/u^* = 3 \).

Fig 4.9 Representación de la relación de \(P \) frente a \(w/u^* \) para la teoría del régimen de lecho rugoso, obtenida de Cheng et al. (1999).
Otra teoría que ofrece mejores resultados para nuestro caso en concreto es la **teoría del régimen de lecho liso**. Esta teoría afirma que la velocidad cortante depende de la fluctuación de la velocidad vertical (σ) y de la distancia a la capa de sedimento, como se muestra en la figura 4.10, en la cual los datos experimentales fueron obtenidos por Grass (971).

La ecuación que describe los puntos experimentales es la siguiente:

$$ P = 0.5 - 0.5 \sqrt{1 - e^{-\frac{2u^2}{\pi\sigma^2}}} $$

$$ \frac{\sigma}{u^*} = 1 - e^{-0.025\left(\frac{u^*y}{\nu}\right)^{1.3}} $$

Donde P es la probabilidad de que no se produzca la sedimentación para el punto calculado, y es la distancia al lecho que se define como 2.75*d, siendo d el diámetro de las partículas de sedimento en nuestro caso la arena con un valor de 0.00019m.

El valor de u^* en función de la probabilidad de que no exista sedimentación se puede ver en la fig 4.11. En nuestro caso para un valor pequeño de probabilidad, por ejemplo 0.002 obtenemos el siguiente valor.

$$ u^* = 0.809 m/s $$

Para poder obtener nuestros resultados en Fluent posteriormente, vamos a relacionar la velocidad cortante u^* con un valor que podamos exportar de Fluent, por ejemplo la energía turbulenta k, entre ambos parámetros existe la siguiente relación:

$$ k = \frac{3}{2}u^2 $$

Por tanto al valor de u^* calculado anteriormente equivale a un valor de k de:

$$ K=0.98 m^2/s^2 $$

Ahora también podremos representar la probabilidad de que no exista sedimentación y la energía turbulenta como se muestra en la figura 4.12.
Fig 4.11. Relación entre la probabilidad de que no exista sedimentación y la velocidad cortante u^*.
En el análisis de iniciación de sedimentación existen otro parámetro muy importante que no hemos comentado aún, el parámetro Shields (τ^\ast). Es un número adimensional utilizado para calcular la iniciación de la sedimentación en un fluido, también es una adimensionalización del esfuerzo de cortadura, τ.

$$\tau^\ast = \frac{\tau}{gd(\rho_s - \rho)}$$

Donde g es la aceleración de la gravedad, ρ es la densidad de la mezcla y ρ_s es la densidad de las partículas.

También se puede obtener en función de la velocidad cortante, que es lo que nos interesa para nuestro caso.

$$\tau^\ast = \frac{u^\ast}{gd(\rho_s - \rho)}$$

Una vez definido este parámetro podemos representar la zona en la que se producirá sedimentación (ver fig 4.13), usando el número de Reynolds que se define en este caso de la siguiente forma:

$$Re^\ast = \frac{u^\ast d}{v}$$

En general, en la figura 4.13 vemos que al aumentar el parámetro Shields, aumenta la probabilidad de que no se produzca sedimentación. Lógico ya que este parámetro es directamente proporcional al cuadrado de la velocidad turbulenta.
Fig 4.13. Relación de τ y Re* para diferentes probabilidades, obtenida de Cheng et al. (1999).

En la figura 4.13 podemos ver lo que habíamos comentado anteriormente, en la zona donde Re* es menor a 1 la teoría que se considera válida es la teoría de lecho liso.

Una vez introducidos estos conceptos vamos a obtener la zona donde se producirá sedimentación. Para analizar este punto representaremos los contornos de la energía turbulenta para distintos rangos, esto nos permitirá visualizar la zona donde se producirá la sedimentación en nuestra presa. Las zonas con k menor a la unidad, será donde la probabilidad de sedimentación sea prácticamente el 100%.

a)
Fig 4.14. Isocontornos para distintos rangos de k, con un caudal de 350 m3/s. a) $k=\text{min}/\text{max}$, b) $k=0.1/1.15$, c) $0.01/0.1$, d) $k=0/0.01$.

a)
Fig 4.15. Isocontornos para distintos rangos de k, con un caudal de 1250m2/s. a) k=min/max,
b) k=1/7.7, c)0.1/1, d) k=0/0.1.
Fig. 1.16. Isocontornos para distintos rangos de k, con un caudal de 2150 m3/s. a) $k=\text{min}/\text{max}$, b) $k=1/13.4$, c) $0.1/1$, d) $k=0/0.1$.

- **Image a)**: Turbulence Kinetic Energy
- **Image b)**: Turbulence Kinetic Energy
- **Image c)**: Turbulence Kinetic Energy
- **Image d)**: Turbulence Kinetic Energy
Como se puede ver en la figura 4.14 para caudales menores a 350 m3/s la sedimentación se producirá en todo la presa, ya que tenemos valores de k menores a la unidad en toda ella.

Para un caudal de 1250 m3/s si tenemos una pequeña zona donde la probabilidad de sedimentación no es del 100%, esta zona es la mostrada en la figura 4.15 b). En las demás zonas la probabilidad será del 100%.

Para un caudal de 2150 y 3050 m3/s sucede lo mismo que el caso anterior. La zona donde la probabilidad de sedimentación es menor al 100% se muestra en la figura 4.16 b) para el caudal de 2150 m3/s y en la figura 4.17 b) para el caudal de 3050 m3/s.

Fig 4.17. Isocontornos para distintos rangos de k, con un caudal de 3050 m2/s. a) k=min/max, b) k=1/30, c) 0.1/1, d) k=0/0.1.
De aquí podemos concluir que en prácticamente todos los punto de la presa existe sedimentación, también comprobamos que si existiera alguna zona donde no se produjera sedimentación, esta estaría al principio de la presa siendo esta zona mayor conforme aumenta el caudal.

Una vez comprobado esto, se debe comprobar si las partículas que entran a la presa adquieren una velocidad de sedimentación lo suficientemente elevada como para depositar en el fondo. Para ello calcularemos el cociente entre la velocidad de sedimentación y la velocidad horizontal \(w/v_x \) y lo compararemos con el cociente entre la altura de la presa y su longitud \((P+S)/L\).

Usaremos un valor de \(V_x \) elevado \((V_x=1 \text{ m/s})\), para calcular un caso desfavorable en el que no pudiera llegar el sedimento al fondo.

\[
\frac{W}{V_x} = \frac{0.022}{1} = 0.022
\]

\[
\frac{P + S}{L} = \frac{20}{1000} = 0.02
\]

Estos resultados nos muestran que incluso para un caso desfavorable con una velocidad horizontal elevada el sedimento llegaría a sedimentar.

De aquí podemos concluir que todo el sedimento que entra en la presa se deposita en el fondo y ninguna porción es elevada por la turbulencia y arrastrada por la corriente hacia el exterior. Por esta razón las presas se colmatan en un periodo muy corto de tiempo.

4.4. Influencia de la altura de la compuerta (salida) en la componente hidráulica

Como aplicación práctica vamos a realizar unas simulaciones modificando la altura de la compuerta (la zona en la figura 4.1 llamada salida), para intentar reducir la sedimentación en el embalse. Para ello realizaremos otras dos simulaiones modificando la altura de la pared en la presa de 15 a 13 y a 11m, para cada altura haremos cuatro simulaciones con los siguientes caudales: 350, 1250, 2150, 3050 m³/s. Para comparar resultados nos centramos en los dos casos extremos, por lo que empezaremos presentado los resultados para una altura de la compuerta de 11m.
Fig 4.18. Contornos de velocidad adimensionales para los distintos caudales 350, 1250, 2150, 3050 m³/s, con una altura de la pared de 11m. Para que los contornos sean adimensionales se ha usado la velocidad máxima para cada caudal.

Para caracterizar el campo de velocidad hemos recurrido a los contorno de velocidad, realizando una escala de 1:10 en el eje x.

Como se puede ver en la figura 4.18 al inicio tenemos una velocidad máxima del fluido ya que la sección de paso es mínima, por otro lado también vemos que la velocidad no es constante y se forman lenguas a causa de la capa límite. Otra zona donde tenemos velocidades elevadas es en la salida, pero menores que a la entrada ya que la sección de paso que hemos introducido es casi 10 veces mayor.

Si comparamos las distintas figuras vemos que los campos de velocidad son prácticamente proporcionales al caudal, aunque las lenguas que se producen son un poco más esbeltas conforme aumentamos el caudal.

Por otro lado si comparando con los resultados obtenidos en el caso anterior (figura 4.4), vemos que las diferencias son despreciables, y que el campo de velocidad no se ve afectado por la altura de la compuerta. Comparamos otros resultados, pero a primera vista se intuye que la altura de la compuerta no va a afectar demasiado al campo fluido.
Fig 4.19. Líneas de corriente a la salida de la presa con una altura de la pared de 11m a) Q=350 m3/s, b) Q=1250 m3/s, c) Q=2150 m3/s, d) Q=3050 m3/s.

Comparando estas líneas de corriente con las de la figura 4.5, vemos que las recirculaciones tienen dimensiones parecidas, aunque la forma cambia un poco sobre todo para el caso de máximo caudal. Las dimensiones de la recirculaciones no cambian mucho ya que la altura de estas es inferior a la altura de la pared que hemos introducido (11m). Por otro lado la diferencia más considerable que observamos es que las líneas de corriente son más horizontales en este caso, debido a que la altura de la compuerta es mayor y las partículas no tienen que elevarse para salir de la presa.

Una vez visto esto, resulta interesante comparar cuantitativamente las dimensiones de la burbuja, para ello calcularemos el área de la zona donde la velocidad horizontal es negativa. Esto no será exactamente el área de la burbuja, pero nos permitirá comparar las dimensiones de las recirculaciones para los distintos casos.

Los resultados obtenidos son los siguientes, para ello se ha usado el código que se muestra en el anexo.
Fracciones de área respecto al área total donde la velocidad en x es negativa, en la malla con una altura de la presa de 11m, para 350, 1250, 2150, 3050 m³/s:

\[fx_{11} = [0.0026 \quad 0.0033 \quad 0.0035 \quad 0.0040] \]

Fracciones de área respecto al área total donde la velocidad en x es negativa, en la malla con una altura de la presa de 13m, para 350, 1250, 2150, 3050 m³/s.

\[fx_{13} = [0.0028 \quad 0.0037 \quad 0.0039 \quad 0.0042] \]

Fracciones de área respecto al área total donde la velocidad en x es negativa, en la malla con una altura de la presa de 15m, para 350, 1250, 2150, 3050 m³/s.

\[fx_{15} = [0.0030 \quad 0.0038 \quad 0.0041 \quad 0.0043] \]

Representado estos resultados en una gráfica obtenemos la figura 4.20. Se observa que las dimensiones de la recirculación aumentan con la altura de la pared de la presa pero no en gran cantidad, sin embargo con el caudal si aumenta considerablemente como era de esperar después de ver los resultados de las líneas de corriente.

Fig 4.20. Fracciones de área donde la velocidad en x es negativa para distintos caudales y altura de la pared de la presa.

Al igual que hemos hecho con los contornos de velocidad podemos hacer con los contornos de presión, para caracterizar el campo de presión en la presa, esto se muestra en la figura 4.21. Se observa que la presión esta domina por la altura de la presa y no por el caudal. Comparando estos resultados con los de la figura 4.9 se observa que no existe ninguna diferencia en los contornos de presión, como era de esperar ya que la altura de la columna de agua no se ha modificado.
Fig 4.21. Contornos de presión para los distintos caudales 350, 1250, 2150, 3050 m³/s, con una altura de la presa de 11m.

Para obtener la zona de sedimentación realizaremos lo mismo que en el caso anterior, representaremos los contornos de la energía turbulenta para distintos rangos, esto nos permitirá visualizar la zona donde se producirá la sedimentación en nuestra presa. Las zonas con k menor a la unidad serán donde la probabilidad de sedimentación sea prácticamente del 100%.
Fig 4.22. Isocontornos para distintos rangos de \(k \), con un caudal de 350 m\(^2\)/s. a) \(k=\text{min}/\text{max} \), b) \(k=0.1/1.15 \), c) 0.01/0.1, d) \(k=0/0.01 \).
Fig 4.23. Isocontornos para distintos rangos de k, con un caudal de 1250m²/s. a) k=min/max, b) k=1/7.7, c)0.1/1, d) k=0.01/0.1, e)k=0/0.01
Fig 4.24. Isocontornos para distintos rangos de k, con un caudal de 2150 m3/s. a) $k=\text{min}/\text{max}$, b) $k=1/7.7$, c) $0.1/1$, d) $k=0.01/0.1$, e) $k=0/0.01$
Como se puede ver en la figura 4.22 para caudales menores a 350 m3/s la sedimentación se producirá en toda la presa, ya que tenemos valores de k menores a la unidad en toda ella.

Para un caudal de 1250 m3/s sí tenemos una pequeña zona donde la probabilidad de sedimentación no es del 100%, esta zona es la mostrada en la figura 4.23 b). En las demás zonas la probabilidad será del 100%.

Para un caudal de 2150 y 3050 m3/s sucede lo mismo que el caso anterior. La zona donde la probabilidad de sedimentación es menor al 100% se muestra en la figura 4.24 b) para el caudal de 2150 m3/s y en la figura 4.25 b) para el caudal de 3050 m3/s.
De aquí podemos concluir lo mismo que en el caso anterior (altura de la pared 15m), en prácticamente todos los puntos de la presa existe sedimentación, también comprobamos que si existiera alguna zona donde no se produjera sedimentación, ésta estaría al principio de la presa siendo esta zona mayor conforme aumenta el caudal.

Podemos también representar cómo evoluciona el área de no sedimentación en función del caudal y de la altura de la pared de la presa. Para ello usaremos el código que se muestra en el anexo. Los resultados obtenidos se muestran a continuación.

Fracciones de área respecto al área total donde no se producirá la sedimentación, en la malla con una altura de la presa de 11m, para 350, 1250, 2150, 3050 m³/s.

\[fs_{11} = [0.0008 \ 0.0215 \ 0.0368 \ 0.0719] \]

Fracciones de área respecto al área total donde no se producirá la sedimentación, en la malla con una altura de la presa de 13m, para 350, 1250, 2150, 3050 m³/s.

\[fs_{13} = [0.0008 \ 0.0214 \ 0.0366 \ 0.0720] \]

Fracciones de área respecto al área total donde no se producirá la sedimentación, en la malla con una altura de la presa de 15m, para 350, 1250, 2150, 3050 m³/s.

\[fs_{15} = [0.0008 \ 0.0212 \ 0.0364 \ 0.0714] \]

Representado estos resultados en una gráfica obtenemos la figura 4.26. Como se puede ver el área de sedimentación es independiente de la altura de la compuerta, ya que esta zona está al principio del embalse y por tanto no se ve afectada en absoluto por las condiciones en la salida. Por otro lado sí vemos que conforme aumenta el caudal aumenta el área de no sedimentación ya que la turbulencia es mayor.

Fig 4.26. Fracciones de área respecto al área total donde no se producirá sedimentación, para distintos caudales y distintas altura de la presa.
Capítulo 5. Sumario y conclusiones

5.1. Sumario ... 77
5.2. Conclusiones ... 79
5.1. Sumario

El objetivo del Proyecto es testear el comportamiento del mejor software comercial que existe actualmente (Fluent), para realizar simulaciones multifásicas aplicables al problema de colmatación de embalse que existe hoy en día. Hemos comenzado con un caso muy sencillo en el cual tenemos una malla unidimensional con una mezcla inicialmente homogénea que dejamos sedimentar completamente, la concentración de partículas inicial es del 40% en volumen.

Los resultados para el modelo de mezcla disponible en Fluent se muestran la figura 5.1, que comparándolos con los resultados del experimento de Snabre vemos que son bastante realistas. Por otro lado realizando esta misma simulación con el modelo Euleriano obtuvimos resultados similares, como se muestra en la figura 5.2.

Fig 5.1. Resultados de la concentración de la fase primaria en una gráfica espacio temporal para el modelo de mezcla

Fig 5.2. Resultados de la concentración de la fase primaria en una gráfica espacio temporal para el modelo de Euleriano.
Adentrándonos más en el problema y usando una mezcla más realista en la que la concentración de partículas es muy pequeña, nos damos cuenta que el programa no ofrece resultados coherentes, ya que no cumple la ecuación de conservación de la masa. La única forma en la que conseguimos que se cumpliera fue usando el modelo Euleriano e introduciendo en la parte inferior de la malla una zona donde solo existía la fase secundaria. Esto nos hace pensar que existe un defecto en la manera que se impone la condición de contorno o en la resolución de la ecuación hiperbólica, con discontinuidades en la fracción de sedimento.

Una vez visto que el software no funciona bien nos planteamos simplificar el problema y realizar la siguiente simulación que teníamos prevista solo con la fase primaria (agua). Esto no es nada descabellado, ya que queremos obtener el comportamiento del fluido en el embalse y por tanto el sedimento no afectará ya que la concentración que suelen llevar los ríos es aproximadamente un 0.6% en volumen.

En la figura 5.3 vemos como es la recirculación que se forma a la salida de la presa, la cual tendrá mucha influencia en la sedimentación. Visto esto nos surge la idea de modificar la altura de la compuerta de la presa, para ver el comportamiento del fluido ante esta modificación. Los resultados más significativos se muestran en la figura 5.4. Aquí vemos como las dimensiones de la burbuja aumentan considerablemente con el caudal como era de esperar, pero en cambio con la altura de la compuerta no aumenta tanto como cabría esperar.

![Fig 5.3. Líneas de corriente para un caudal de 3050 m³/s y una altura del muro de la presa de 11m](image-url)
Fig 5.4. Fracciones de área donde la velocidad en x es negativa para distintos caudales y altura de la pared de la presa.

5.2. Conclusiones

Tras ver los resultados de las simulaciones observamos que queda mucho por mejorar en este campo, ya que el mejor software comercial que existe no es capaz de simular un problema tan importante como el que existe actualmente de la colmatación de embalses. Hemos visto que este software solo es válido para algunos casos muy simples con concentraciones altas de sedimento y que no tienen ninguna aplicación práctica, ya que físicamente es imposible que existan.

Los únicos resultados prácticos que hemos podido obtener han sido simplificando y considerando una única fase. Hemos visto que la sedimentación se produce en toda la presa y que en la salida se forma una recirculación que será muy importante en el proceso de sedimentación. Por tanto se deberá diseñar la presa teniendo en cuenta todos estos factores, los cuales únicamente es posible optimizar realizando simulaciones. Por ello resulta de interés tener un software que nos permitiera realizar simulaciones multifásicas de este estilo y poder obtener mejores resultados. Es por ello que existen investigadores que desarrollan nuevas técnicas numéricas y modelos de mezcla agua-sedimento a día de hoy (ver por ejemplo Bohórquez, 2012). En este sentido el presente proyecto justifica la necesidad de nuevos proyectos de investigación sobre la temática en cuestión.
<table>
<thead>
<tr>
<th>Nivel</th>
<th>Código para crear las figuras</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>2.6, 3.1</td>
<td>81</td>
</tr>
<tr>
<td>6.2</td>
<td>2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 3.4, 3.5, 3.6, 3.7, 3.8</td>
<td>81</td>
</tr>
<tr>
<td>6.3</td>
<td>4.6, 4.7</td>
<td>82</td>
</tr>
<tr>
<td>6.4</td>
<td>4.20, 4.26</td>
<td>84</td>
</tr>
</tbody>
</table>
6.1. Código para crear las figuras 2.6, 3.1

\[
\text{clear all}
\]
\[
d=0;
\]
\[
\text{for } x=0:9 \\
\text{for } y=0:9 \\
\text{for } z=0:9 \\
\text{for } w=0:9
\]
\[
\text{% convertimos los números } x, y, z, w \text{ en caracteres para} \\
\text{poder abrir los archivos}
\]
\[
\text{str}=\text{int2str(x)}; \\
\text{str1}=\text{int2str(y)}; \\
\text{str2}=\text{int2str(z)}; \\
\text{str3}=\text{int2str(w)};
\]
\[
\text{if } x>0 \\
\text{archivo} = \text{strcat(} \text{faseagua-'} ، str, str1, str2, str3, '0'); \\
\text{else} \\
\text{archivo} = \text{strcat(} \text{faseagua-'} ، str1, str2, str3, '0'); \\
\text{end}
\]
\[
\text{fid}=\text{fopen(archivo,'r');} \\
\text{si el archivo se ha abierto correctamente procedemos a} \\
\text{leer los datos}
\]
\[
\text{if } \text{fid}>2 \\
\text{d}=d+1; \\
\text{levamos el pulsador al punto donde comienzan los} \\
\text{datos}
\]
\[
\text{estado} = \text{fseek (fid, 62, -1);} \\
\text{e} = \text{fscanf(fid,'\%e',[4,inf]);}
\]
\[
\text{cerramos el archivo}
\]
\[
\text{fclose(fid);}
\]
\[
\text{guardamos la fila que contiene los datos que nos} \\
\text{interesa en la matriz que contiene los datos de} \\
\text{cada instante de tiempo.}
\]
\[
\text{A} = \text{A}'; \\
\text{b}(d,:) = \text{b}; \\
\text{c}(d,:) = \text{b};
\]
\[
\end
\]
\[
\text{end}
\]
\[
\text{end}
\]
\[
\text{n,m} = \text{size(c');}
\]
\[
\text{X} = \text{linspace(0,9*m,m)}; \text{9*m son los segundos de la simulación}
\]
\[
\text{Y} = \text{linspace(0,0.12,n)}; \text{0.12 son los m de depósito}
\]
\[
\text{contourf(X,Y,c',25)} \\
\text{title('fracción volumetrica de la fase primaria')} \\
\text{xlabel('tiempo (seg)')} \\
\text{ylabel('posición(m)')}
\]

6.2. Código para crear las figuras 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 3.4, 3.5, 3.6, 3.7, 3.8.

\[
\text{clear all, close all, clc} \\
d=0;
\]
\[
\text{for } x=0:9 \\
\text{for } y=0:9 \\
\text{for } z=0:9 \\
\text{for } w=0:9
\]
\[
\text{% convertimos los números } x, y, z, w \text{ en caracteres para} \\
\text{poder abrir los archivos}
\]
\[
\text{str}=\text{int2str(x)}; \\
\text{str1}=\text{int2str(y)}; \\
\text{str2}=\text{int2str(z)}; \\
\text{str3}=\text{int2str(w)};
\]
Ya que tenemos archivos con 4 y 5 dígitos, previamente vemos si tenemos un archivo con 4 o 5 dígitos para abrirlo correctamente:

```matlab
archivo=strcat('faseagua-',str,str1,str2,str3);

%Abrimos el archivo
fid=fopen(archivo,'r');

%Si el archivo se ha abierto correctamente procedemos a leer los datos
if fid>2
    d=d+1;
    %Llevamos el pulsador al punto donde comienzan los datos
    estado=fseek (fid,85,-1);
    %Leemos los datos en una matriz de 4 filas
    [A,cont]=fscanf(fid,'%e',[5,inf]);
    %Cerramos el archivo
    fclose(fid);
    %Guardamos la fila que contiene los datos que nos interesa en la matriz que contiene los datos de cada instante de tiempo.
    c(d,:)=A(5,:);
end
end end end
```

```matlab
[n,m]=size(c');
X=linspace(0,0.1*m,m); %0.1*m son los segundos de la simulación
Y=linspace(0,0.1,n); %0.1 son los m de depósito
cl og=10(c');
cl og(c'==0)=NaN;
figure (1)
contourf(X,0.1-Y,clog,25)
xlabel('tiempo (seg)','FontSize',11);
ylabel('posición (m)','FontSize',11);
```

```matlab
figure (2)
semilogy(.1-Y,c(5:5:35,:))
axis([0,0.1,10e-5,1]);
legend('t=0.5s','t=1s','t=1.5s','t=2s','t=2.5s','t=3s','t=3.5s','t=4s','t=4.5s','t=5s');
l ylab el ('fracción volumétrica de arena','FontSize',11);
xlab el ('posición (m)','FontSize',11);
```

```matlab
B=c*1e-8; % B es una matriz con el volumen ocupado por la fase secundaria en cada celda
for i=1:m
    alfap(i)=sum(B(i,:))/1e-5; %1e-5 es el volumen de la malla
end
figure (3)
plot(X,alfap)
ylabel('fracción volumétrica de arena','FontSize',11);
xlabel('tiempo(s)','FontSize',11);
```

6.3. Código para crear las figuras 4.6, 4.7
clear all, close all, clc

d=0;
for w=0:3050
 % convirtimos el numero w en caracteres para poder habrir los archivos
 str=int2str(w);
 archivo=strcat('2mQ',str);

 % Abrimos el archivo
 fid=fopen(archivo,'r');
 % Si el archivo se ha abierto correctamente procedemos a leer los datos
 if fid>2
 d=d+1;
 % Llevamos el pulsador al punto donde comienzan los datos
 estado=fseek (fid,97,-1);
 % Leemos los datos en una matriz de 4 filas
 [A,cont]=fscanf(fid,'%e',[6,inf]);

 % Cerramos el archivo
 fclose(fid);
 % Guardamos la fila que contiene los datos que nos interesa en la matriz que contiene los datos de cada instante de tiempo.
 c1(d,:)=A(4,:); % vel magnitud
 c2(d,:)=A(5,:); % vel horizontal
 c3(d,:)=A(6,:); % vel vertical
 end
end

y=linspace(-20,0,50);
[m,n] = size(c3);
figure (1)
plot(c3(1:m,:),y);
ylabel('posición (m)','FontSize',16);
xlabel('velocidad vertical (m/s)','FontSize',16);
legend('Q=50m3/s','Q=150m3/s','Q=250m3/s','Q=350m3/s','Q=650m3/s','Q=950m3/s','Q=1250m3/s','Q=1850m3/s','Q=2450m3/s','Q=2750m3/s','Q=3050m3/s','FontSize',16);

figure (2)
plot(c2(1:m,:),y);
ylabel('posición (m)','FontSize',16);
xlabel('velocidad horizontal (m/s)','FontSize',16);
legend('Q=50m3/s','Q=150m3/s','Q=250m3/s','Q=350m3/s','Q=650m3/s','Q=950m3/s','Q=1250m3/s','Q=1850m3/s','Q=2450m3/s','Q=2750m3/s','Q=3050m3/s','FontSize',16);

figure (3)
plot(c1(1:m,:),y);
ylabel('posición (m)','FontSize',16);
xlabel('velocidad (m/s)','FontSize',16);
legend('Q=50m3/s','Q=150m3/s','Q=250m3/s','Q=350m3/s','Q=650m3/s','Q=950m3/s','Q=1250m3/s','Q=1850m3/s','Q=2450m3/s','Q=2750m3/s','Q=3050m3/s','FontSize',16);
6.4. Código para obtener los datos de las figuras 4.20, 4.26

clear all, close all, clc
fid=fopen('v-k-Q350','r');
estado=fseek (fid,115,-1);
[A, cont]=fscanf(fid,'%e',[7, inf]);
%A(1,:) es el cell number, A(2,:) es la cordenada x
%A(3,:) es la cordenada y, A(4,:) es la vel en x, A(5,:) es la
%vel en y, A(6,:) es la k y A(7,:) es el cell area.
close(fid);
[n, m]=size(A);
area_ns=0;
area_x_neg=0;
for x=1:m
if A(6, x)>0.98
 area_ns=area_ns+A(7, x);
 %área donde no se produce la sedimentación
end
if A(4, x)<0
 area_x_neg=area_x_neg+A(7, x);
 %área en la que la velocidad en x es negativa, nos dara una idea del
 %área de la burbuja (aprosimadamente la mitad de esta).
end
end
area_t=10500; %área total del embalse
fs15(1)=area_ns/area_t;%fracción de area donde no se produce la sedimentación
fx15(1)=area_x_neg/area_t;%fracción de área donde la velocidad en x es negativa

fid=fopen('v-k-Q1250','r');
estado=fseek (fid,115,-1);
[A, cont]=fscanf(fid,'%e',[7, inf]);
%A(1,:) es el cell number, A(2,:) es la cordenada x
%A(3,:) es la cordenada y, A(4,:) es la vel en x, A(5,:) es la
%vel en y, A(6,:) es la k y A(7,:) es el cell area.
close(fid);
[n, m]=size(A);
area_ns=0;
area_x_neg=0;
for x=1:m
if A(6, x)>0.98
 area_ns=area_ns+A(7, x);
 %área donde no se produce la sedimentación
end
if A(4, x)<0
 area_x_neg=area_x_neg+A(7, x);
 %área en la que la velocidad en x es negativa, nos dara una idea del
 %área de la burbuja (aprosimadamente la mitad de esta).
end
end
area_t=10500; %área total del embalse
fs15(2)=area_ns/area_t;%fracción de area donde no se produce la sedimentación
fx15(2)=area_x_neg/area_t;%fracción de área donde la velocidad en x es negativa

fid=fopen('v-k-Q2150','r');
estado=fseek (fid,115,-1);
[A, cont]=fscanf(fid,'%e',[7, inf]);

84
A(1,:) es el cell number, A(2,:) es la coordenada x
A(3,:) es la coordenada y, A(4,:) es la vel en x, A(5,:) es la
vel en y, A(6,:) es la k y A(7,:) es el cell area.
fclose(fid);
[n,m]=size(A);
area_ns=0;
area_x_neg=0;
for x=1:m
 if A(6,x)>0.98
 area_ns=area_ns+A(7,x);
 %área donde no se produce la sedimentación
 end
 if A(4,x)<0
 area_x_neg=area_x_neg+A(7,x);
 %área en la que la velocidad en x es negativa, nos dara una idea del
 %área de la burbuja (aproximadamente la mitad de esta).
 end
end

area_t=10500;%área total del embalse
fs15(3)=area_ns/area_t;%fración de área donde no se produce la sedimentación
fx15(3)=area_x_neg/area_t;%fracción de área donde la velocidad en x es negativa

fid=fopen('v-k-Q3050','r');
estado=fseek (fid,115,-1);
[A,cont]=fscanf(fid,'%e',[7,inf]);
%A(1,:) es el cell number, A(2,:) es la coordenada x
%A(3,:) es la coordenada y, A(4,:) es la vel en x, A(5,:) es la
%vel en y, A(6,:) es la k y A(7,:) es el cell area.
fclose(fid);
[n,m]=size(A);
area_ns=0;
area_x_neg=0;
for x=1:m
 if A(6,x)>0.98
 area_ns=area_ns+A(7,x);
 %área donde no se produce la sedimentación
 end
 if A(4,x)<0
 area_x_neg=area_x_neg+A(7,x);
 %área en la que la velocidad en x es negativa, nos dara una idea del
 %área de la burbuja (aproximadamente la mitad de esta).
 end
end

area_t=10500;%área total del embalse
fs15(4)=area_ns/area_t;%fracción de área donde no se produce la sedimentación
fx15(4)=area_x_neg/area_t;%fracción de área donde la velocidad en x es negativa
Capítulo 7. Bibliografía

• Phillip P. Brown and Desmond F. Lawler. Sphere Drag and Settling Velocity Revisited. Journal of environmental engineering © ASCE/ MARCH 2033

• Fernandez-Feria R. Mecánica de Fluidos. Servicio de Publicaciones e Intercambio Científico de la Universidad de Málaga. 2001.

